Table of Contents

Introduction
Getting Started
Code Editor
Overview
Win Forms
Basic Features
Extended Features
WPF
Basic Features
Extended Features
Syntax Parsing
Advanced Topics
Scripter
Overview
C#/Visual Basic
Python/IronPython
TypeScript/JavaScript
Script Debugging
Debugger Ul
Form Designer
Overview
Win Forms
WPF

javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)

Getting Started

AlterNET Studio allows you to extend WinForms and WPF .NET applications with code editing, scripting, and user interface
designing capabilities.

Installation
AlterNET Studio requires .NET Framework 4.6.2+ and Visual Studio 2019 or 2022 to be installed on the target machine.

By default, the AlterNET Studio installation program installs AlterNET Studio binary files to Program Files (x86)\AlterNET
Software\AlterNET Studio\Bin\ folder and example projects with source code in \Users\Public\Documents\AlterNET
Software\AlterNET Studio folder. These settings can be changed if you select Customize in the installation wizard.

Advanced installation options include platform selection (WinForms, WPF, or both) and the Python/IronPython,
TypeScript/JavaScript, and LangServer/DAP features.

AlterNET Studio Setup Wizard

Select platforms to be installed:

AlterNET Studio AlterNET Studio

Install TypeScript/JavaScript modules

Install Language Server Protocol / Debug Adapter Protocol modules
Install Python/IronPython modules

Install Locations:

Program Files: C:\Program Files (x86)\AlterNET Software\AlterNET Studio v.8

Demo Projects: C:\Users\Public\Documents\AlterNET Software\AlterNET Studio v.8

Place shortcut to demo projects on the Desktop

Install

By installing this software you accept the Terms of License Agreement

The installation program registers Visual Studio extensions and places controls and components on the AlterNET Code Editor,
AlterNET Scripter, and AlterNET Form Designer tabs in the Visual Studio toolbox.

e (Code Editor
e Scripter

e Form Designer

Toolbox * 1 Xx

| Search Toolbox 40|'|
4 AlterMET Code Editor v.9 -
k Pointer

SyntaxEdit

E TextSource

B4 IrenPythonParser
Ef§ PythonMNETParser
B PythonParser
F'ﬁna CParser

Bf mssOLParser

F'ﬁnha SglParser

B VeScriptParser
F'ﬁ:g AmlParserWithSchema
B4 csParser

F:§ vbParser

B TypeScriptParser
B:§ JavaScriptParser
F'ﬁ:g HAMLParser

F'a-{?. HtrmlParser

Fﬁnh Parser
B ¥miParser =

Other versions of .NET Framework, .NET 6.0, NET 7.0 and .NET 8.0 are supported via NuGet packages. A complete list of NuGet
packages can be found here:

https://alternetsoft.com/download#nuget

If you have a previous major version of AlterNET Studio and decide to install the new one side-by-side, you will have two sets of
Visual Studio Extensions and two sets of tabs, each one clearly displaying the version number.

Demo and QuickStart projects

Once the product is installed, you can explore demos and quick-start projects by compiling Alternet.Studio.AllDemos solutions or
accessing these demos through the Demo Explorer tool, which is added to the Windows Start menu.

https://alternetsoft.com/download#nuget

AIterNET Software Demo Explorer - [m] X

= Studio for C2/Visual Basic

= Winforms AlterNET Studio Run
AlterMET Studio
Code Editor Open Project
Syntax Editor This demo shows how all preducts can be integrated in one solution - from designing visual interface using Form Designer, to writing application
Form Designer logic in powerful Code Editor and executing and debugging this code with Scripter.
QuickStart Projects
WPF Maore Information:
a8 St”dio_ for Python AlterNET Studio allows you to extend your WinForms and WPF .NET application with code editing, scripting and user interface designing capabilities.
WinForms It provides a set of component libraries that enables users of your applications to write scripts in C# and Visual Basic, programming languages to
WPF extend your application with custorn functionality; run and debug these scripts with a fully-featured debugging engine and design visual user
= Studio for IronPython interfaces with graphical Form Designer.
WinForms == = =
WPF

= Studio for TypeScript
WinForms
WPF

= Studio for LSP/DAP
WinForms
WPF

"

ack Lgcah Watches Goorli Thesds FndResks

| tines 24 a1 | ety

AlterNET Studio 9.5

Copyright © 2016-2023 ALTERNET SOFTWARE PTY LTD f\ Lj_ E_|2

All rights reserved http:/fwww.alternetsoft.com

Core Components
AlterNET Studio includes the following core components:
Code Editor

AlterNET Code Editor is a component library that brings efficient code editing functionality to .NET applications. It provides code
editing capabilities such as syntax highlighting, IntelliSense (code completion), code outlining, visual indicators for bookmarks,
line styles, syntax errors, and more.

AlterNET Code Editor matches most of the features of Visual Studio code editor and is primarily designed for C#, Visual Basic,
TypeScript, JavaScript, Python, and XML text editing.

Scripter

AlterNET Scripter is a component library designed to integrate C#/Visual Basic, TypeScript/JavaScript, and IronPython scripts into
the .NET applications. It allows extending functionality of the application logic without recompiling and redeploying the
application.

AlterNET Scripter provides a framework to compile and execute user-defined scripts along with a set of debugging tools enabling
application developers to make application objects available to the scripts so they can write user-defined scenarios for these
applications.

Form Designer

AlterNET Form Designer is a component library providing a quick and convenient way to create graphical user interfaces. It allows
for placing controls on the design surfaces, setting their initial properties, and writing event handlers for their events.

AlterNET Form Designer includes WinForms and WPF designers, both supporting designing visual interfaces, serializing design
content, and running the forms being designed.

Integrating AlterNET Studio components.

AlterNET Code Editor, Scripter, and Form Designer can work together in applications that require text editing, scripting, or Ul
designing functionality. Code Editor is desinged for C#, Visual Basic, TypeScript, JavaScript, Python and XML code editing and can
be used in conjunction with Form Designer and Scripter packages to provide code editing functionality for code-behind files,
writing event handlers and script editing.

Refer to our AlterNET Studio demo project to see how Code Editor, Scripter, and Form Designer work together.

Licensing

AlterNET Studio requires a valid license to be installed for developing .NET applications that use its components. Evaluation-
license is supplied upon AlterNET Studio installation and when consuming NuGet packages; these licenses are based on LICX files
technology provided by Microsoft and are valid for 30 days since first use.

Upon ordering a paid version of our product, a customer is sent a License key and will be able to activate it on the target
computer. This key will support several activations but is not transferable between development machines.

In specific scenarios, such as using our software inside a protected environment, multiple build servers, or Azure Pipeline, we can
provide a node-unlocked license, which can be copied to the specific folder on a development PC or a build server
(ProgramData\AlternetSoft\Licenses by default). The location of the folder we scan for licenses can be changed by setting the
following environment variable on your Windows system: ALTERNET_STUDIO_LICENSE_DIRECTORY. It is particularly useful in the
case of Azure Pipeline, where access to the above folder is restricted.

Once you drag AlterNET Studio controls or components from the toolbox, such as <xref:Alternet.Editor.SyntaxEdit>,
<xref:Alternet.Editor.Wpf.TextEditor >, <xref:Alternet.FormDesigner.WinForms.FormDesignerControl>, or
<xref:Alternet.Scripter.ScriptRun> on your form, the LICX file will be added to your project under the Properties folder with the
content like this:

Alternet.Editor.SyntaxEdit, Alternet.Editor.v9, Version=9.0.0.0, Culture=neutral, PublicKeyToken=8032721e70924a63
Alternet.Scripter.ScriptRun, Alternet.Scripter.v9, Version=9.0.0.0, Culture=neutral, PublicKeyToken=8032721e70924a63

Alternet.FormDesigner.WinForms, Alternet.FormDesigner.v9, Version=9.0.0.0, Culture=neutral,
PublicKeyToken=8032721e70924a63

In case these components are created from the code, a LICX file with the above content should be added to your project. It also
can be copied from our demo projects if needed.

The design-time license is checked when you work with this component at design time or when the project is compiled, and the
evaluation screen reminding you about the evaluation mode and the number of days left for your evaluation will appear once in a
while. If the project compiled with an evaluation version of licensed components is run outside the Microsoft Visual Studio
debugger, a screen suggesting that the application was created with an evaluation version of AlterNET Studio will be displayed.
Once a paid license is activated using the LicenseActivation tool, this nag screen will no longer appear.

When the evaluation period expires, you will still be able to compile and run your application from within Visual Studio. However,
applications created with an expired license will not be run in standalone mode.

Below is more information about the Microsoft license compiler and some discussions related to the intent and purpose of LICX
files, using them with source code control systems, etc.

https://msdn.microsoft.com/en-us/library/haOk3c9f(v=vs.110).aspx
http://stackoverflow.com/questions/5628969/how-licenses-licx-file-is-used

http://stackoverflow.com/questions/51363/how-does-the-licenses-licx-based-net-component-licensing-model-work

https://msdn.microsoft.com/en-us/library/ha0k3c9f(v=vs.110).aspx
http://stackoverflow.com/questions/5628969/how-licenses-licx-file-is-used
http://stackoverflow.com/questions/51363/how-does-the-licenses-licx-based-net-component-licensing-model-work

Code Editor Overview

AlterNET Code Editor is a .NET component library that brings efficient code editing functionality into your WinForms and WPF
.NET applications. It provides code editing capabilities such as syntax highlighting, code completion and outlining, visual indicators

for bookmarks, line styles, syntax errors, and more.

The main components in the package are <xref:Alternet.Editor.SyntaxEdit> for WinForms and
<xref:Alternet.Editor.Wpf.TextEditor > for WPF. These controls provide text editing functionality and support almost all the features
that can be found in the Visual Studio.NET code Editor, including customizable syntax highlighting, code outlining, code
completion, unlimited undo/redo, bookmarks, word wrap, drag-n-drop, built-in search/replace dialogs, multiple views of the
same text, displaying gutter, margin, line numbers and many more.

Code Editor includes a set of quick-start projects, each designed to highlight the component's specific features.

) AlterNET Software Demo Explorer - [m] X
= Studio for C2/Visual Basic .
5 WinForms Code Editor Run
AlterMET Studio
Code Editor Open Project
Syntax Editor This projects demonstrates main features and capabilities of the Code Editor.
Form Designer
CuickStart Projects More Information:
WPF It supports almost all the features that can be found in the Visual Studio.NET code Editor, including customizable syntax highlighting, code outlining,
() Studio for Python code completion, unlimited undo/redo, bookmarks, word wrap, drag-n-drop, built-in search/replace dialogs, multiple view of the same text, |
WinForms displaying gutter, margin, line numbers and many more.
WPF

= Studio for lronPython
WinForms
WPF

= Studio for TypeScript
WinForms
WPF

= Studio for LSP/DAP
WinForms
WPF

] Dy i L

-

AlterNET Studio 9.5

Copyright @ 2016-2023 ALTERNET SOFTWARE PTY LTD f\ Lj E_|2
All rights reserved http/fwww.alternetsoft.com j

Below is a brief overview of these projects:

Scroll Bar Annotations - Shows how text edit control can display markers about current line, syntax errors, bookmarks, modified
lines and search results on the vertical scrollbar area.

Syntax Highlighting - Shows how text edit control can highlight syntax when working with different programming languages.

Code Completion - Shows how to display code completion while you type, either by getting code completion information from
the parser or programmatically.

Code Outlining - Shows how to use outlining; either provided by parser, or programmatically.
Selection - Shows how to use different options to control text selection appearance and behavior in the text editor.

Undo/Redo - Shows how to use various options to control undo/redo behavior.

Search and Replace - Shows how to use built-in Search and Replace dialogs and implement search across multiple documents.
Gutter - Shows how to control the appearance of the gutter area and display various indicators on it.

Bookmarks - Shows how to set and navigate through numbered and though-loop bookmarks and how to set bookmarks

navigation across multiple documents.

Word Warp - Shows how to configure text edit control to wrap words at the right edge of the visible area or a given position.
Line Styles - Shows how to display line indicators on the text editor control area and associated images on the gutter.

Print and Preview - Shows how to print and preview text editor control content and set different printing options.

Code Snippets - Shows how to display and use predefined code templates to speed up entering frequently used fragments of
code.

Multiple Views and Split View - Shows how to configure text editor windows to display and edit the same text content.

Margin - Shows how to use various options controlling the appearance and behavior of the Margin line and UserMargin area next
to the gutter.

HyperText - Shows how to highlight hyperlinks in the text.

Page Layout - Shows how to configure text edit control to display its content as if it is positioned on the printed page.
Miscellaneous - Shows how to display white-space symbols and background images, as well as highlight matching brackets.
Customize - Shows an example of an options dialog that allows changing display settings of the text edit control.

Roslyn-Based Parsing - Shows how to link text edit control to Microsoft Roslyn-based parsers that perform full syntax and
semantic analysis of the C# or Visual Basic code and provide features like code completion, code outlining and syntax/semantic
error highlighting.

TypeScript Parsing - Shows how to link text edit control to Microsoft TypeScript-based parsers that perform full syntax and
semantic analysis of the TypeScript or JavaScript code and provide features like code completion, code outlining, and
syntax/semantic error highlighting.

Advanced Syntax Parsing - Shows how to link text edit control to parsers that perform syntax analysis for a set of programming
languages and provide features like code completion, code outlining, and syntax error highlighting.

Snippet Parsers - Shows how to implement C# or Visual Basic syntax and semantic analysis for sub-set of the code, like class or
method body.

SQL DOM Parser - Shows how to implement syntax analysis for Microsoft SQL.
XAML Parser - Shows how to implement syntax analysis for XAML.

Lsp-based parsers (C/C++, Java, Python, Lua, XML, and PowerShell) - Shows how to implement syntax analysis for these

languages using native servers.
Lsp Multiple Files - Shows how to combine multiple LSP documents into a single workspace.

Python Parsing - Shows how to implement syntax analysis for Python and IronPython.

Creating your first project

The first thing to do after creating a new WinForms or WPF application is to place the <xref:Alternet.Editor.SyntaxEdit> or
<xref:Alternet.Editor.Wpf.TextEditor > controls. These controls are the central components in the package, and in many cases, they
are the only ones that need to be placed on the form. These controls look similar to the standard multi-line text box, except for
having a gray band on the left of its client area, used to display line numbers, bookmarks, and other visual indicators.

The following example demonstrates how to load text into the editor and save it. Use the LoadFile method to load text from the
file. The first parameter specifies the name of the file to be loaded into the control. The optional second parameter specifies
encoding.

edit.LoadFile(openFileDialogl.FileName);

Saving of the text is performed similarly:

edit.SaveFile(saveFileDialogl.FileName);

It is possible to load text from streams instead of files, by substituting the previous two functions by
<xref:Alternet.Editor.SyntaxEdit.LoadStream*> and <xref:Alternet.Editor.SyntaxEdit.SaveStream*>.

Working with text

The Code Editor package includes non-visual components: <xref:Alternet.Editor.TextSource.TextSource> (or
<xref:Alternet.Editor.Wpf.TextSource> for WPF applications). For WindowsForms applications TextSource is accessible through
the Microsoft Visual Studio toolbox. The <xref:Alternet.Editor.SyntaxEdit> and <xref:Alternet.Editor.Wpf.TextEditor> controls do
not store the text being edited. This task is offloaded to the TextSource components, which provide methods to manipulate the
text content. Text edit controls can have TextSource explicitly assigned and use an internally created one in case it's not set. It gives
a clear separation between visualization and data layers. Also, it makes it possible to implement features like multiple views of the
same text by assigning a single <xref:Alternet.Editor.TextSource.TextSource> to several text editors. Visually, these editors can be
placed in a single window separated by a splitter control or multiple windows. Most TextSource components' methods are also
available via the edit controls.

A# Code Editor Basic Features (WinForms)

Code Editor matches most of the Visual Studio code editor features, such as Selection, Code Completion, Code Outlining,

Search/Replace, Navigation and Undo, and many more.

Editing features

Code Editor provides an extended set of methods and properties for text modifications and navigating within the text content.
Most of these methods are called implicitly when the user edits the text in the edit control or presses the arrows and PageUp,

PageDown, End, or Home keys. The most commonly used methods and properties are listed below:
e <xref:Alternet.Editor.SyntaxEdit.Position> - gets or sets the current position (Column, Row) within the text.

o <xref:Alternet.Editor.SyntaxEdit.NewLine*> - inserts new line at the current position and number of spaces or tabs according

to the indentation options.
o <xrefAlternet.Editor.SyntaxEdit.Insert*> - inserts string at the current position.
o <xref:Alternet.Editor.SyntaxEdit.DeleteRight*> - deletes a number of characters to the right of the current position.
e <xref:Alternet.Editor.SyntaxEdit.DeleteLeft*> - deletes a number of characters to the right of the current position.
o <xrefAlternet.Editor.SyntaxEdit.BreakLine*> - inserts a line break at the given position.
o <xrefAlternet.Editor.SyntaxEdit.UnBreakLine*> - joins two lines at the end of a current line.
o <xrefAlternet.Editor.SyntaxEditMoveCharLeft*> - moves the current position to one character left.
o <xrefAlternet.Editor.SyntaxEdit MoveCharRight*> - moves the current position to one character right.
o <xrefAlternet.Editor.SyntaxEditMoveLineDown*> - moves the current position to one line below.
e <xref:Alternet.Editor.SyntaxEdit.MovelLineUp*> - moves the current position to one line above.
* <xrefAlternet.Editor.SyntaxEdit. MoveFileBegin*> - moves the current position to the beginning of the text.
* <xref:Alternet.Editor.SyntaxEdit. MoveFileEnd*> - moves the current position to the end of the text.

All such modifications are translated to the underlying <xref:Alternet.Editor.TextSource.TextSource> component, which also

maintains the list of all edits so a user can undo them.

Selection

Just like almost any text editor, the <xref:Alternet.Editor.SyntaxEdit> supports a concept of text selection and a wide range of
operations on it. All the selection-related aspects are controlled via the <xref:Alternet.Editor.SyntaxEdit.Selection> property.
Selections can be of two types: traditional stream-type selection and block-type selection. The latter can be created by navigating

the text with the navigation keys and holding Shift and Alt keys together.

<xref:Alternet.Editor.ISelection.BackColor> and <xref:Alternet.Editor.ISelection.ForeColor> define the background and the
foreground colors used to mark the currently selected text. Selection.InActiveBackColor and Selection.InActiveForeColor are used

when the editor is out of focus.

The <xref:Alternet.Editor.ISelection.Options> controls different aspects of the behavior of selections.
e <xref:Alternet.Editor.SelectionOptions.DisableSelection> completely disables selection support in the editor.
o <xref:Alternet.Editor.SelectionOptions.DisableDragging> disables drag-n-drop operations on the selection.

e <xref:Alternet.Editor.SelectionOptions.SelectBeyondEol> allows selection in the virtual space (if the

NavigateOptions.BeyondEol is enabled)

o <xref:Alternet.Editor.SelectionOptions.UseColors> instructs the editor to use the same foreground colors for selected text as
the ones used for unselected text (i.e, any syntax highlighting will be visible). Note for this to be useful; the section
background color must be in contrast with all possible foreground colors.

e <xref:Alternet.Editor.SelectionOptions.HideSelection> causes the selection to become invisible when the editor loses focus.

o <xref:Alternet.Editor.SelectionOptions.SelectLineOnDblClick> allows the user to select the entire line by double-clicking on
it.

o <xref:Alternet.Editor.SelectionOptions.DeselectOnCopy> causes the selection to be removed after the user performs copy
selection to clipboard operation.

o <xref:Alternet.Editor.SelectionOptions.PersistentBlocks> causes the selection to be retained after the user has finished
making it and has started other navigation.

e <xref:Alternet.Editor.SelectionOptions.OverwriteBlocks> causes the new input to overwrite the currently selected text.

o <xref:Alternet.Editor.SelectionOptions.SmartFormat> allows formatting blocks when pasting according to the rules defined
by the syntax parser.

o <xref:Alternet.Editor.SelectionOptions.WordSelect> causes whole words to be selected rather than individual characters
when using mouse selection.

o <xref:Alternet.Editor.SelectionOptions.DrawBorder> causes Edit control to draw border around selection

o <xrefAlternet.Editor.SelectionOptions.SelectLineOnTripleClick> allows selecting the whole line rather than a single word by
triple clicking the mouse

e <xref:Alternet.Editor.SelectionOptions.DeselectOnDbIClick> causes selection to be cleared by mouse dblclick.

o <xref:Alternet.Editor.SelectionOptions.ConvertToSpacesOnPaste> specifies that selection should convert all tabs to spaces in
the text being pasted when the Lines.UseSpaces is on.

e <xref:Alternet.Editor.SelectionOptions.RtfClipboard> causes the selection to copy its content in text and RTF formats.

e <xref:Alternet.Editor.SelectionOptions.ClearOnDrag> causes selected text to be cleared after dragging from an external
source

o <xref:Alternet.Editor.SelectionOptions.CopyLineWhenEmpty> allows copying whole line when selection is empty

o <xref:Alternet.Editor.SelectionOptions.DisableCodeSnippetOnTab> - disables code snippets insertion when pressing Tab
key.

o <xref:Alternet.Editor.SelectionOptions.SelectWordOnCtrlIClick> causes the word under the cursor to be selected when a user
holds the Ctrl key

o <xref:Alternet.Editor.SelectionOptions.ExtendedBlockMode> causes text being typed to be inserted into all selected lines
within the rectangular block.

It is possible to programmatically select text by setting <xref:Alternet.Editor.ISelection.SelectionStart> and
<xref:Alternet.Editor.ISelection.SelectionLength > properties, or with the help of <xref:Alternet.Editor.ISelection.SetSelection* >
method.

The selected text can be retrieved or set via the <xref:Alternet.Editor.ISelection.SelectedText> property.
A developer can perform various operations on the current selection. Some of them are:

o <xrefAlternet.Editor.ISelection.IsEmpty> checks whether there is any text selected.

e <xref:Alternet.Editor.ISelection.SetSelection*> selects the specified rectangular area.
e <xref:Alternet.Editor.ISelection.SelectAll> selects the whole document.

e <xref:Alternet.Editor.ISelection.Cut>/<xref:Alternet.Editor.ISelection.Copy >/ <xref:Alternet.Editor.ISelection.Paste> performs
standard operations like copying text to the clipboard, cutting text to the clipboard and pasting text from the clipboard.

e <xref:Alternet.Editor.ISelection.IsPosInSelection*> checks if the specified position lies within selection.

o <xref:Alternet.Editor.ISelection.Clear> clears selection (this does not affect the text itself).

e <xref:Alternet.Editor.ISelection.Move*> moves or copies the currently selected text to a new location.

o <xref:Alternet.Editor.ISelection.SmartFormat> formats the selected text according to the rules defined by the syntax parser.

o <xref:Alternet.Editor.ISelection.LowerCase>/<xref:Alternet.Editor.ISelection.UpperCase>/<xref:Alternet.Editor.ISelection.Capi
talize> change the case of the currently selected text.

o <xref:Alternet.Editor.ISelection.UnIndent>/<xref:Alternet.Editor.ISelection.UnIndent> change the indent of the currently
selected text.

In fact, if some action can be performed by the user, it can also be performed programmatically:

if(ledit.Selection.IsEmpty)
edit.Selection.SelectedText =
"(" + edit.Selection.SelectedText + ")";

This code encloses the currently selected text in brackets.

Searching and Replacing

Among the operations that can be performed on the text, there are operations of searching and replacing text strings. Unlike the
standard multi-line text editor, which does not implement such functionality, the <xref:Alternet.Editor.SyntaxEdit> control comes
with built-in support for them. It's ready to use out-of-the-box: when the user presses the Ctrl+F key combination, the search

dialog box appears:

{ ~ li 5 - —
myAge = value; pUbld e
y a &
public override string TosString() Aa Apl F* Current Document et
this. -
return “Name = " + Name + ", Age = " + Age;

1

public static void Main{)
{

Console. WriteLine("Simple Properties”);

The text-replace dialog can be activated by pressing Ctrl+H. Besides using the Ul to control the process, all the operations can be
executed programmatically by calling the corresponding methods of the <xref:Alternet.Editor.SyntaxEdit>.

For example, to find some string, you could use the following code:

edit.Find("some string");

Or, with regular expressions:

edit.Find(" ", SearchOptions.RegularExpressions, new
System.Text.RegularExpressions.Regex("a.?z"));

To activate the Search Dialog:

edit.DisplaySearchDialog();

Moreover, the Search and Replace dialog box functionality is not hardwired: you can replace the dialog box with your own by
implementing the <xref:Alternet.Editor.Dialogs.ISearchDialog> interface, and assigning it to the editor by setting its SearchDialog
property. The built-in dialog can serve as a good example and a starting point.

If you need to perform the Search and Replace operation without any user interaction, you can use the ReplaceAll method.

le.

edit.ReplaceAll("bad", "good", SearchOptions.WholeWordsOnly |
SearchOptions.EntireScope, out count);

After this, every occurrence of a "bad" word in the entire text will be replaced by a "good" word.

Note that this would move the cursor position to the place where the last replacement has been made, so if you need it to be
unnoticeable for the user, you need to enclose this call in the code which saves and restores the current cursor position:

System.Drawing.Point pos;

pos = edit.Position;

edit.ReplaceAll("bad", "good", SearchOptions.WholeWordsOnly |
SearchOptions.EntireScope, out count);

edit.Position = pos;

Search/Replace function can work across multiple documents. To allow the search to find text in multiple editors, you will need to
set SearchManager.Shared to true and provide a list of editors to perform a search in its InitSearch event handlers and
return/navigate to the appropriate editor in GetSearch event handler:

SearchManager.SharedSearch.Shared = true;

SearchManager.SharedSearch.InitSearch +=
new InitSearchEvent(DoInitSearch);

SearchManager.SharedSearch.GetSearch +=
new GetSearchEvent(DoGetSearch);

private void DoInitSearch(object sender, InitSearchEventArgs e)

{
e.Search = GetActiveSyntaxEdit() as ISearch;
foreach (var edit in editors.Values)
{
edit.SearchGlobal = true;
e.SearchList.Add(edit.Source.FileName);
}
}
private void DoGetSearch(object sender, GetSearchEventArgs e)
{
foreach (var edit in editors.Values)
{
if (edit.Source.FileName == e.FileName)
{
e.Search = edit as ISearch;
break;
}
}
}

Scroll Bars and Split View

The appearance and behavior of scrollbars are controlled by the <xref:Alternet.Editor.SyntaxEdit.Scrolling> property.

The <xref:Alternet.Editor.IScrolling.ScrollBars> property determines which scrollbars and under what conditions appear on the

<xref:Alternet.Editor.SyntaxEdit>. It can take one of the following values:

<xref:System.Windows.Forms.RichTextBoxScrollBars.None> - neither horizontal, nor vertical scrollbar ever appear

<xref:System.Windows.Forms.RichTextBoxScrollBars.Horizontal > - horizontal scrollbar appears if necessary; vertical one

never appears

<xref:System.Windows.Forms.RichTextBoxScrollBars.Vertical > - vertical scrollbar appears if necessary; horizontal one never

appears
<xref:System.Windows.Forms.RichTextBoxScrollBars.Both> - both horizontal and vertical scrollbars appear if necessary

<xref:System.Windows.Forms.RichTextBoxScrollBars.ForcedHorizontal > - horizontal scrollbar is always visible; vertical one

never appears

<xref:System.Windows.Forms.RichTextBoxScrollBars.ForcedVertical> - vertical scrollbar is always visible; horizontal one

never appears

<xref:System.Windows.Forms.RichTextBoxScrollBars.ForcedBoth> - both horizontal and vertical scrollbars are always visible

The behavior of the scrollbars is controlled by ScrollingOptions.

You can also use Scrolling.Options to allow <xref:Alternet.Editor.SyntaxEdit> to split its content. Note that

<xref:Alternet.Editor.SyntaxEdit>'s Dock must be set to DockStyle.Fill. Otherwise, this feature will not work. Splitters are displayed

in the left-bottom corner for vertical splitting and the right-top corner for horizontal splitting.

<xref:Alternet.Editor.ScrollingOptions.SmoothScroll> - if set, the editor's content is updated as the user drags the scrollbar.
Otherwise, the content is updated after the user releases the scrollbar thumb. Disabling this option may improve

performance on slow machines.

<xref:Alternet.Editor.ScrollingOptions.ShowScrollHint> - if set, a hint window showing the new number of the topmost line,
is displayed whenever the user drags the scrollbar.

<xref:Alternet.Editor.ScrollingOptions.UseScrollDelta> - if set, editor window content is scrolled by several characters when

caret becomes invisible rather than one character

<xref:Alternet.Editor.ScrollingOptions.SystemScrollbars> - if set, system scroll bars are displayed; otherwise, custom

scrollbars are used.

<xref:Alternet.Editor.ScrollingOptions.FlatScrollbars> - if set, scroll bars are displayed in flat style. This option works only if

SystemScrollBars is on.

<xref:Alternet.Editor.ScrollingOptions.AllowSplitHorz> - allows displaying horizontal splitting buttons in the scroll area. This
option works if SystemScrollBars is off and the control has the Dock property set to DockStyle.Fill.

<xref:Alternet.Editor.ScrollingOptions.AllowSplitVert> - allows displaying a vertical splitting button in the scroll area. This
option works if SystemScrollBars is off and the control has the Dock property set to DockStyle.Fill.

<xref:Alternet.Editor.ScrollingOptions.HorzButtons> - allows displaying additional buttons in the horizontal scrolling area.
This option works only if SystemScrollBars is off.

<xref:Alternet.Editor.ScrollingOptions.VertButtons > - allows displaying additional buttons in the vertical scrolling area. This
option works only if SystemScrollBars is off.

<xref:Alternet.Editor.ScrollingOptions.VerticalScrollBarAnnotations > - allows displaying scroll bar annotations that show
special items, such as line modifications, syntax errors, search results bookmarks, and the caret position, throughout the
entire document within the scroll bar. Individual annotation kinds are controlled by
<xref:Alternet.Editor.IScrolling.Annotations> property.

Multiple Views & Split View _ O %

Thizs dema shows ability to visually split the edit control to provide different views of the same text as well as various scrolling options.

Split Scrolling
[Mlow Horizontal Split] Horizontal Scroll Bar Additional Buttons [Display Scroll Hint Scrollbar Annotations
[Mlow Vertical Split [Vertical Scroll Bar Additional Buttons Smooth Scroll [] System Scrall
#region Copyright (c) 2816-2821 Alternet Software .

e

AlterNET Code Editor Library

Copyright (c) 2816-2821 Alternet Software
ALL RIGHTS RESERVEﬂ

http:/ www.alternetsoft.com
contact@alternetsoft.com
#f X
#endregion Copyright (c) 2816-2821 Alternet Software =
4 3
#region Copyright (c) 2816-2821 Alternet Software -
i* —_—
AlterNET Code Editor Library .
-

emem Ll A% AR e AART AT o ol o

Visual Themes

Visual themes allow changing the appearance of all graphical elements in the editor by setting
<xref:Alternet.Editor.SyntaxEdit.VisualThemeType> or <xref:Alternet.Editor.SyntaxEdit.VisualTheme> type properties. Light and
Dark visual themes are included, and custom appearance can be configured via a custom visual theme.

Wisual Thame: Dark

Gutter

The gutter is the area to the left of the text, the purpose of which is to display miscellaneous indicators for the corresponding lines
of text. These indicators include bookmark indicators, line wrapping indicators, line style icons, line numbers, outlining buttons,
and line modification markers.

7 namespace HelloWorld

8 {

9 static class Program

1@ {

11 ' <summary>

12 The main entry point for the application.
e ff <fsummary>
| 14 [STAThread]
| |15 static void Main()

16 {
@17

18 Application.SetCompatibleTextRenderingDefault(false);
o 119 | Application.Run{new Forml());

20 }

21 }

22 }

All the images displayed in the gutter are contained in the gutters image list. The following code gives an example of how to add a

custom icon to this list from another image list (for example, the one dropped on the form during design time):

edit.Gutter.Images.Images.Add(imageListl.Images[0@]);

The mechanism of the line styles icons allows you to define how the editor will display certain lines of the text.
The most common use for this is the indication of breakpoint lines and of the current execution point.

For example, the following code defines the style to be used for breakpoints.

style_id = edit.LineStyles.AddLineStyle("breakpoint",
Color.White, Color.Red, Color.Gray, 11, LineStyleOptions.BeyondEol);

(Note in the current version, image # 11 corresponds to the built-in breakpoint indicator image, and #12 corresponds to the
current execution point image.

Later on, some lines of the text can be assigned the style:

edit.Source.LineStyles.SetLineStyle(line_no, style_id);

(Note that here and in the other places of this document, line numbers start at 0.)

Note: Every line can have at most one style at any given time. If you need to remove line style for some particular line, call:

edit.Source.LineStyles.RemovelLineStyle(line_no);

For <xref:Alternet.Editor.SyntaxEdit> control appearance of the gutter is controlled by the following properties:
<xref:Alternet.Editor.IGutter. Width>, <xref:Alternet.Editor.IGutter.BrushColor>, <xref:Alternet.Editor.IGutter.PenColor> and
<xref:Alternet.Editor.IGutter.Visible>. Width property specifies the width of the gutter area,
<xref:Alternet.Editor.IGutter.BrushColor> specifies the background color of the gutter area, <xref:Alternet.Editor.IGutter.PenColor>
specifies the color of the gutter line, and <xref:Alternet.Editor.IGutter.Visible> indicates whether or not to draw the gutter. Note
that the gutter can adjust its width if line numbers or outlining is on and painted on the gutter. <xref:Alternet.Editor.SyntaxEdit>
allows drawing line numbers to indicate the position of the visible lines inside the document visually. To enable line numbers, you
need to set <xref:Alternet.Editor.GutterOptions.PaintLineNumbers> to true. Turning
<xref:Alternet.Editor.GutterOptions.PaintLinesOnGutter> option enables drawing line numbers on the gutter area; turning it off
causes line numbers to be painted immediately after the gutter area. The appearance of line numbers are controlled by the
<xref:Alternet.Editor.IGutter>'s properties: <xref:Alternet.Editor.IGutter.LineNumbersStart>,
<xref:Alternet.Editor.IGutter.LineNumbersForeColor>, <xref:Alternet.Editor.IGutter.LineNumbersBackColor>,
<xref:Alternet.Editor.IGutter.LineNumbersAlignment>, <xref:Alternet.Editor.IGutter.LineNumbersLeftindent> and
<xref:Alternet.Editor.IGutter.LineNumbersRightindent>, which are intuitively understandable.

Like Microsoft Visual Studio editor, <xref:Alternet.Editor.SyntaxEdit> provides the ability to track modified lines visually. To enable
this feature, you need to turn <xref:Alternet.Editor.GutterOptions.PaintLineModificators> on. When LineModificators are on, they

indicate lines that were changed since the last saving. New changes are marked with Yellow color; changes that were done before
the last saving are marked with Lime color. Colors can be customized using
<xref:Alternet.Editor.IGutter.LineModificatorChangedColor> and <xref:Alternet.Editor.IGutter.LineModificatorSavedColor >

properties.

Reaction to mouse clicks and double-clicks on the gutter area can be implemented by assigning handlers to the
<xref:Alternet.Editor.SyntaxEdit.GutterClick> and <xref:Alternet.Editor.SyntaxEdit.GutterDblClick> events.

Bookmarks

Just as with often-used books, the process of navigating the text can be made more efficient by using bookmarks. Two kinds of
bookmarks are supported by the <xref:Alternet.Editor.SyntaxEdit>: plain and numbered. The former can be toggled for the current
line using the Ctr{+K Ctrl+K key combination sequence and can be navigated in a cyclical manner using the Ctr{+K Ctr{+N (next
bookmark) or Ctrl+K Ctrl+P (previous bookmark). The numbered bookmarks have a different flavor: there can be up to ten
bookmarks, each having a number associated with it.

return myAge;

myAge = value;

n | }
public override string ToString()
public static woid Main()

{

A Console.WriteLine("Simple Properties®});

=4

fi Craatae a Aew Parcan ahdacr:

Toggling the numbered bookmark is performed using the Ctr{+K Ctrl+#, and navigation to the specific bookmark is performed by
pressing the Ctrl+# key combination (where # is any of the digits from 0 to 9). There can be only one plain bookmark in any line.
Numbered bookmarks do not have such a limitation. However, only the indicator for the first bookmark in the line will be
displayed in the gutter area if <xref:Alternet.Editor.GutterOptions.PaintBookMarks> is set to true.

Like most other things in the editor, bookmarks can be manipulated programmatically. Note that the list of bookmarks belongs to
the text source, so multiple views of the same source share the same set of bookmarks.

The following code snippet sets the plain bookmark at the current position:

System.Drawing.Point pos = edit.Position;
edit.Source.BookMarks.SetBookMark(pos, int.MaxValue);

To set the numbered bookmark, replace int. MaxValue by the bookmark number (0..9).

To clear all the bookmarks set in the text source, call the <xref:Alternet.Editor.TextSource.IBookMarks.ClearAllBookMarks >
method:

edit.Source.BookMarks.ClearAllBookMarks();

Navigating to the location defined by a particular bookmark can be performed as follows:

edit.Source.BookMarks.GotoBookMark(index);

Code Editor supports named bookmarks with descriptions and hyperlinks. The user may see a description in a tooltip window
when moving the cursor over the bookmark and launching the browser with the specified URL when clicking on the bookmark.
Such bookmarks can be set using the following code:

edit.Source.BookMarks.SetBookMark(edit.Position, o,
"Bookmarkl", "This is Named Bookmark", "www.alternetsoft.net");

If you need to have custom images, you can change the bookmark indicator images by assigning a custom image list:

edit.Gutter.BookMarkImageIndex =
edit.Gutter.Images.Images.Count;
edit.Gutter.Images.Images.Add(imageListl.Images[0]);

(This code uses the first image from the imagelist1, which you could, for example, create by just dropping a new Image List from
the toolbox on the form. For more examples of working with the gutter, refer to the corresponding section of this manual.)

You can configure bookmarks navigation to work across multiple documents. These documents should be added to the
BookMarkManager class, and every document should have the FileName property assigned.

BookMarkManager.Register(edit.Source);
BookMarkManager.SharedBookMarks.Activate += new
EventHandler<ActivateEventArgs>(DoActivate);

private void DoActivate(object sender, ActivateEventArgs e)

{
foreach (var edit in editors.Values)
{
if (edit.Source.FileName == e.FileName)
{
ActivateEditorTab(editor);
break;
}
}
}

In this mode, all bookmarks will be stored in a global list inside BookmarkManager instead of every individual SyntaxEdit control
allowing global navigation through them.

Code Completion (Intellisense)

Although the primary purpose of an editor is to be a convenient tool for the user to enter the text, quite often, guidance from the
editor can significantly improve the effectiveness of the work process. When editing a text which has some structure (i.e, a
computer program in some language), there are often well-defined sets of input possibilities in certain contexts. For example, for
many programming languages, the sequence "someobject.” should be followed by one of the existing field names. To assist the
user in such situations, the text editor can activate a popup list containing all the methods that can be accessed from the current

scope.

;Jublic override string ToString()

this.]_
retur 5 TSN - i > -or Age { oet; set
H @ Equals Declare an Age property of type int:
public st £ GetHashCode
{ @ GetType
Conso GL MemberwiseClone
@ myhge
@ myMName
S Mame -
with the person:
oo sond;

ffCr
Perso

ff Pr
Conso

If there is a partial word immediately to the left of the current cursor position, the first entry that starts with that word is
highlighted. The user can then continue typing up until the method he meant is selected or use the up and down arrow keys to
navigate the list and then insert the complete method name by pressing the Enter key.

Automatic Code Completion Invocation

In most cases, the Code Completion list and Signature Help for method parameters are provided by the parser alongside the list

of characters, such as period "." or open parens "(", which invoke code completion automatically as user types. The task of code
completion is to have the list of available choices appear automatically as user types. For example, after a user types "someobject.”

the list of class members for that object is expected to appear, and after they type "somemethod(" the tooltip showing the list of
parameters for that function is expected to appear. It can be customized to show those popups only if the user stops inputting for

some short delay after typing the activating symbol ("." or "(").

The automatic code completion is implemented by Roslyn C# and Visual Basic parsers, TypeScript/JavaScript parsers, and
Advanced C#, J#, Visual Basic, VBScript, JavaScript, C, XML, and Python parsers.

For example, automatic code completion is attempted after typing a period ('.") following a member (member access expression),
typing an open brace ('(') following a member (invocation expression or object creation expression), typing a period ('.') inside
using section, typing less sign ('<') inside XML comments, etc. This feature is implemented as close as possible to the Visual
Studio .NET editor, so it works intuitively. On top of that, Roslyn-based parsers are configured to invoke code completion when
the user starts typing identifiers.

When these parsers are used, you still can control some aspects of code completion, for example delay before code completion
window appears, using the <xref:Alternet.Editor.SyntaxEdit. NeedCodeCompletion> event, which will be discussed later. Moreover,
for advanced parsers you can register your own types and objects, namespaces and assemblies for code completion using the
CompletionRepository property of <xref:Alternet.Syntax.SyntaxParser>.

To make types from most commonly used assemblies such as System, System.Drawing, and System.Windows.Forms to be
available for code completion, you can call the following method

csParserl.Repository.RegisterDefaultAssemblies();

If you need to provide code completion for assemblies declared in other assemblies, you need to register these assemblies this
way:

csParserl.Repository.RegisterAssembly("System.Xml");

You may need to register types for code completion that are not declared in the assembly, but present in the form of source code
somewhere else.

For Roslyn-based parsers you can rely on underlying solution/project/document object model:

csParserl.Repository.RegisterCodeFiles(new string[] { "MyFile.cs" });

For one of advanced parsers you need first to create <xref:Alternet.Syntax.SyntaxParser>, load this file into the
<xref:Alternet.Syntax.Parser.Strings> object, and then add parsed <xref:Alternet.Syntax.SyntaxTree> to the code completion
repository. The following code demonstrates how it can be accomplished:

ISyntaxParser parser = new Alternet.Syntax.Parsers.Advanced.CsParser();
parser.Strings = new TextStrings();
parser.Strings.LoadFile("MyFile.cs")

parser.ReparseText();
csParserl.CompletionRepository.RegisterSyntaxTree(parser.SyntaxTree);

Code Outlining

The <xref:Alternet.Editor.SyntaxEdit> control supports outlining, a text navigation feature that can make navigation of large
structured texts more effective. The essence of outlining lies in defining sections of the text as structural units that, once collapsed,

can be visually replaced by a shorter representation, i.e,, by an ellipsis (".."). During the text navigation, the user can dynamically
switch between the collapsed and complete representation of any particular section. Sections can be nested.

public override string ToS5tring()

{

public static void Main()
{

return "Mame = " + Name + ", Age = " + Age

Console.WritelLine ("S5inple Frope}

J/ Create a new Person object:
Fer=son person = new Person();

S/ Print out the name and the age associated with the person:
Console.WriteLine ("Per=son details - {0}", person);

The section can be expanded by clicking on the "+" button, double-clicking the proxy text, or pressing the Ctrl+M Ctrl+M key
sequence (in the default key mapping). The section can be collapsed by clicking on the "-" button or pressing the Ctrl+M Ctrl+M

key sequence. All the sections can be collapsed or expanded at once using the Ctrl+M Ctrl+L key sequence.

Outlining is the property of the <xref:Alternet.Editor.SyntaxEdit> control itself, not of the
<xref:Alternet.Editor.TextSource.TextSource>. Thus it is possible to have two views of the same text, one with outlining and
another without or even to have completely different structural parts defined.

All the aspects of the outlining are controlled via the <xref:Alternet.Editor.SyntaxEdit.Outlining> property of the
<xref:Alternet.Editor.SyntaxEdit>. The outlining can be enabled or disabled using the
<xref:Alternet.Editor.I0utlining.AllowOutlining> property either in design time or at runtime. The look of the outlining is
controlled by the <xref:Alternet.Editor.|Outlining.OutlineColor> and <xref:Alternet.Editor.IOutlining.OutlineOptions> properties.

There are two approaches to defining outline sections.

Direct Definition of Outline Sections

Outline sections can be explicitly defined by calling the appropriate methods of the <xref:Alternet.Editor.SyntaxEdit.Outlining>
property, i.e.

edit.Outlining.Outline(new Point(®, ©), new Point(int.MaxValue, 0), 0, "...").Visible = false;"

This code snippet defines the section of the first level consisting of the entire first line of the text, using ellipsis ("..") as the proxy
text and being in a collapsed state.

While this approach is simple, it has one significant drawback: if sections representing structural units are defined by the content
of the text, which a user can edit, sections have to be constantly kept in sync with the text, which can be a non-trivial task.

Automatic Definition of Outline Sections Using the Syntax Parser

The syntax parsing framework has to be employed to provide automatic code outlining. This approach may seem to be more
complex at first look; however, it provides consistent results. To implement this approach, a class descending from the
<xref:Alternet.Syntax.SyntaxParser> class needs to be defined, and the <xref:Alternet.Syntax.SyntaxParser.Outline*> method
needs to be implemented. This method will be frequently called by the <xref:Alternet.Editor.SyntaxEdit> whenever the text
changes, so to provide the user with a smooth editing experience, the implementation should be relatively fast.

Code Editor includes parsers that support automatic outlining for C#, Visual Basic, J#, JavaScript, VBScript, Ansi-C, SQL, HTML, XML,
and Python languages.

The following example demonstrates how to implement the parser marks every line starting from the sharp ("#") sign as a
separate outline section.

private void InitializeComponent()

this.parserl = new XParser();

public class XParser: SyntaxParser

public XParser()

Options = SyntaxOptions.Outline;

public override int Outline(IList<IRange> Ranges)

{

}

{
{
}
{
}

Ranges.Clear();
for(int i = @; i < Strings.Count; i++)
{
if(Strings[i].ToString().StartsWith("#"))
{
Ranges.Add(new OutlineRange(
new Point(@, i),
new Point(int.MaxValue, i),
e, "...", false));

}

return Ranges.Count;

Code Editor Extended Features (WPF)

Code Editor provides advanced text editing functionality, such as customizable keyboard mapping, HyperText handling, spell-
checking integration, printing and exporting, macro recording and playback, and miscellaneous display features.

Keyboard Mapping

While the <xref:Alternet.Editor.Wpf.TextEditor> closely mimics the key-mapping common to most of Microsoft's products. It is
entirely customizable: you can add or change the behavior of specific keys or even define an entirely different key-mapping.

To assign an action to some key combination, use the following code:

private void edit_Action()

{
}

edit.KeylList.Add(Keys.W | Keys.Control | Keys.Alt, new
KeyEvent(edit_Action));

This code would make the Ctrl+Alt+W key combination execute the edit_Action method.

Or to pass some object to the key handler:

private void edit_Action(object o)

{
}

edit.KeylList.Add(Keys.W | Keys.Control | Keys.Alt, new
KeyEventEx(edit_Action), some_object);

To remove some key handler, regardless of whether you have added it yourself or it is the default one, call:

edit.KeylList.Remove(Keys.A | Keys.Control);

The code described before is used to manage the key handling in the default state. In fact, the key handling is slightly more
complex than that: the <xref:Alternet.Editor.Wpf.TextEditor>'s key handling mechanism can be in different states other than the
default one. Every state has its own key mapping table. Key mapping for bookmark operations can be a good example: after the
user presses the Ctrl+K key combination, combinations Ctrl+K, Ctrl+N, Ctrl+P, Ctrl+L (the list is incomplete) obtain the new
meaning. If a key combination is pressed for which there is no assignment in some non-default state, then the state is changed to
default, and the combination is evaluated in the new context. <xref:Alternet.Editor Wpf.TextEditor> defines four different non-
default states, but you can implement your own:

edit.KeylList.Add(Keys.W | Keys.Control, null, @, 5);
edit.KeyList.Add(Keys.Tab, new KeyEvent(edit_Action), 5, 5);

This code creates a state that is activated by pressing the Ctr{+W key combination, in which the Tab key causes the edit_Action to
be executed. The state is changed back to default when the user presses some key other than the Tab key. Until now, we have only
examined the cases where you add some new functionality or suppress some existing one. There also might be a case when you
want to use an entirely different key mapping, for example, to simulate some other environment your users are familiar with. To
accomplish this, it is necessary to completely clear the current key mapping and then assign every function performed by the
editor to some key. Note that this means every function: even such trivial things as cursor navigation and insertion of a new line,
are performed according to the key mapping.

For example, the following code assigns the editor's key-mapping to a single action defined: "Select All", which is assigned to the

Ctrl+X key combination.

edit.KeyList.Clear();
edit.KeylList.Add(Keys.X | Keys.Control,
((EventHandlers)edit.KeyList.Handlers)SelectAllEvent);

URL handling

The <xref:Alternet.Editor.Wpf.TextEditor> can be set up to handle pieces of text that look like some kind of URL by setting the
<xref:Alternet.Editor. Wpf.IEditHyperText.HighlightHyperText> property to true. The handling consists of highlighting those text
pieces and processing clicks on them. By default, clicking the URL causes the operating system default action to be performed (i.e,,
launching a browser or an email client). However, you can override this behavior by assigning the
<xref:Alternet.Editor.Wpf.TextEditorJumpToUrl> event handler.

private void edit_JumpToUrl(object sender, UrlJumpEventArgs e)

{
if(is_our_url(e.Text))
{
process_url(e.Text);
e.Handled = true;
}
}

Spellchecker Interface

The <xref:Alternet.Editor.Wpf.TextEditor> supports the spell-as-you-type spell checker integration. To enable spelling for the
editor, set its <xref:Alternet.Editor Wpf.IEditSpelling.CheckSpelling> property to true and assign the WordSpell event handler.

The following artificial example considers any word longer than three characters to be correct:

private void edit_WordSpell(object sender, WordSpellEventArgs e)
{

e.Correct = e.Text.Length > 3;

}

this.edit.WordSpell += new WordSpellEvent(this.edit_ WordSpell);

Incorrect words are displayed with the wiggly underline (the default color is red, but it can be changed using the
<xref:Alternet.Editor.Wpf.IEditSpelling.SpellColor> property). In real-life scenarios, you need to use some third-party
software/dictionary to check the text. Another alternative is using a word-list file. Many of them, including Public Domain or free
ones, can be found on the Internet. Refer to a Miscellaneous quick start project, which has one of these dictionaries.

Another helpful feature supported by <xref:Alternet.Editor.Wpf.TextEditor> is AutoCorrect, allowing you to auto-correct words
when typing. To enable this feature, you need to set the AutoCorrection property to true and handle the AutoCorrect event to

provide replacements for words that were typed incorrectly.

Printing and Exporting
<xref:Alternet.Editor.Wpf.TextEditor> includes support for printing, print previewing, and exporting to RTF and HTML.

Exporting can be performed as simply as this:

edit.SaveFile(FileName, new RtfExport());

Printing tasks are performed and configured via the Printing property of the <xref:Alternet Editor.Wpf.TextEditor>.

For example, to show the print preview dialog, call:

edit.Printing.ExecutePrintPreviewDialog();

<xref:Alternet.Editor.Wpf.TextEditor > control supports adding user-defined information while printing.
To add some text to the footer:

edit.Printing.Footer.CenterText = "draft";

Text in headers and footers can contain substitution tags. The standard ones are: [page], [pages], [date], [time] and [username].

Macro Recording and PlayBack

<xref:Alternet.Editor.Wpf.TextEditor> has macro recording and playback capabilities. It allows recording sequences of keyboard

commands and playing them later. Note that mouse input is not recorded.

This feature enables you to store a set of frequently used editing commands. Set MacroRecording property to start/finish macro
recording. Use the PlayBack method to repeat the stored command sequence.

White-space Display

It is sometimes desirable for the user to see the codes that influence the text's layout and are usually invisible. These codes are
space, tab, end-of-line, and the end-of-file (not really a code) and are often collectively referred to as white space. The TextEditor
has the option to display them and control their appearance.

using -System; 4
< summayry>q

class -Personi
{1
- private -string -myName -

=-"N/A":1
- private-int -myAge -=-0;9

The display of the white space is enabled using the <xref:Alternet.Editor. Wpf.IWhiteSpace.Visible> property. The color used to
display white-space codes is determined by the <xref:Alternet.Editor. Wpf.IWhiteSpace.SymbolColor> property, and the characters
used to display those codes are determined by EofSymbol, EolSymbol, SpaceSymbol, and TabSymbol properties.

Line Separator

It is possible to have lines of the editor to be separated by thin horizontal lines and to have the current line highlighted. This
behavior is controlled by the <xref:Alternet.Editor.Wpf.TextEditor.LineSeparator> property.

The following options are available:

e <xref:Alternet.Editor. Wpf.SeparatorOptions.HighlightCurrentLine> specifies that the current line in the editor will be
highlighted using the HighlightColor for the background.

e <xref:Alternet.Editor. Wpf.SeparatorOptions.HideHighlighting> specifies that the highlighting of the current line should be
hidden when the editor loses focus.

o <xref:Alternet.Editor. Wpf.SeparatorOptions.SeparateLines> specifies that a thin horizontal line of LineColor should be
drawn between each line of text.

o <xref:Alternet.Editor Wpf.SeparatorOptions.SeparateWrapLines> specifies that each visual line of text produced as a result
of word-wrap should be separated in the same manner as separate lines (works only if the SeparateLines option is also
specified).

o <xref:Alternet.Editor. Wpf.SeparatorOptions.SeparateContent> specifies that a line separator will be drawn between sections

of the code (for example, between methods) if TextEditor control is associated with SyntaxParser supporting this feature.

Code snippets

The code snippets are the next code completion provider, allowing to insertion of frequently used fragments of code. Code
snippets can be inserted into the editor by pressing the Tab key after the snippet shortcut or by executing the code snippet popup
window with Ctrl + K + X key sequence, or activated programmatically by calling the CodeSnippets method of the
<xref:Alternet.Editor.Wpf.TextEditor>.

The purpose of the code snippets is to permit the user to quickly enter one of the predefined fragments of text. If the code snippet
has fields declared, the editor allows modifying their values, causing updating field values inside the whole snippet.

The following picture illustrates the usage of the code snippets.

public static void Main ()
{

for (int I = 0; 1 < lepgth; i++)
i
Insert Snippet: i
gl #if A
3Ll #region
gk attribute

sk _ Code snippet for if statement

gk! indexer Shortcut: if

3L invoke W

Hidden and Read-Only Lines

<xref:Alternet.Editor.Wpf.TextEditor > control can mark certain lines to be read-only or hide them, so the user can't see them. This
can be achieved by using <xref:Alternet.Editor. Wpf.TextSource SetLineHidden*> and
<xref:Alternet.Editor.Wpf.TextSource.SetLineReadonly*> methods. For hidden lines to take effect, the
<xref:Alternet.Editor.Wpf.DisplayStrings.AllowHiddenLines> property needs to be set to true. Read-only lines can be made
visually different from editable lines by setting <xref:Alternet.Editor.Wpf.TextEditor.ReadonlyBackColor> property. Sometimes it's
required to mark certain lines to be both hidden and read-only. This way, they can not be deleted if the user selects the outer

block containing them and tries to delete it.

using System;

public class MyClassl

i
public string MyFunc()
{

Conzsole.Writeline("Simple Properties™);

ff Create a new Form object:
System.Windows.Forms.Form forml = new System.Windows.Forms.Form(

ff Print out the name and the text associated with the form:
Console.Writeline("Form details - {®}", forml);

ff Set some values on the form object:
forml.Name = "Forml";

Structure Guidelines

<xref:Alternet.Editor.Wpf.TextEditor > control can display dashed lines between syntax blocks for some parsers (Roslyn-based,
TypeScript, and some advanced parsers), helping the user to better understand the structure of the document being edited. This
behavior is controlled by a Parser and can be switched off by the StructureGuideLines parser option.

public static woid Main()

{

Console.WriteLine("Simple Properties”);

// Create a new Person object:
Person person = new Person();

// Print out the name and the age associated with the perscn
Console.WriteLine("Person details - {8}", person};

/f Set some values on the person object:
person.Name = "Joe";

person.Age = 99;

Console.WriteLine("Person details - {8}", person);

/f Increment the Age property:
person.Age += 1;

Minimap

A Minimap (code outline) gives you a high-level overview of your source code, which is useful for quick navigation and code
understanding. A file's minimap is shown on the right side of the editor. You can click the shaded area to quickly jump to different

sections of your file.

Person

myName = “N/A"; return myName;
myAge = @;

return myName;

Code Editor Basic Features (WPF)

Code Editor matches most of the Visual Studio code editor features, such as Selection, Code Completion, Code Outlining,

Search/Replace, Navigation and Undo, and many more.

Editing features

Code Editor provides an extended set of methods and properties for text modifications and navigating within the text content.
Most of these methods are called implicitly when the user edits the text in the edit control or presses the arrows and PageUp,

PageDown, End, or Hope keys. The most commonly used methods and properties are listed below:
e <xref:Alternet.Editor.Wpf.TextEditor.Position> - gets or sets the current position (Column, Row) within the text.

o <xref:Alternet.Editor Wpf.TextSource.NewLine*> - inserts new line at the current position and number of spaces or tabs

according to the indentation options.
o <xref:Alternet.Editor Wpf.TextSource.lnsert*> - inserts string at the current position.
o <xref:Alternet.Editor. Wpf.TextSource.DeleteRight*> - deletes a number of characters to the right of the current position.
o <xref:Alternet.Editor Wpf.TextSource.DeleteLeft*> - deletes a number of characters to the right of the current position.
o <xref:Alternet.Editor. Wpf.TextSource.BreakLine*> - inserts a line break at the given position.
o <xrefAlternet.Editor.Wpf.TextSource.UnBreakLine*> - joins two lines at the end of a current line.
o <xref:Alternet.Editor. Wpf.TextEditor.MoveCharLeft*> - moves the current position to one character left.
o <xrefAlternet.Editor.Wpf.TextEditor.MoveCharRight*> - moves the current position to one character right.
o <xref:Alternet.Editor.Wpf.TextEditor. MoveLineDown*> - moves the current position to one line below.
o <xref:Alternet.Editor Wpf.TextEditor.MoveLineUp*> - moves the current position to one line above.
* <xref:Alternet.Editor Wpf.TextEditor. MoveFileBegin*> - moves the current position to the beginning of the text.
* <xrefAlternet.Editor. Wpf.TextEditor.MoveFileEnd*> - moves the current position to the end of the text.

All such modifications are translated to the underlying <xref:Alternet.Editor. Wpf.TextSource> component, which also maintains

the list of all edits so the user can undo them.

Selection

Just like almost any text editor, the <xref:Alternet.Editor Wpf.TextEditor> supports a concept of text selection and a wide range of
operations on it. All the selection-related aspects are controlled via the <xref:Alternet.Editor. Wpf.TextEditor.Selection> property.
Selections can be of two types: traditional stream-type selection and block-type selection. The latter can be created by navigating

the text with navigation keys holding Shift and Alt keys held together.

<xref:Alternet.Editor.Wpf.TextEditor.SelectionBrush> and <xref:Alternet.Editor. Wpf.TextEditor.SelectionForeColor> define the
background and the foreground colors used to mark the currently selected text. Selection.InActiveBackColor and
Selection.InActiveForeColor are used when the editor is out of focus.

The <xref:Alternet.Editor.Wpf.ISelection.Options> controls different aspects of the behavior of selections.
e <xref:Alternet.Editor.Wpf.SelectionOptions.DisableSelection> completely disables selection support in the editor.
o <xref:Alternet.Editor.Wpf.SelectionOptions.DisableDragging> disables drag-n-drop operations on the selection.

o <xrefAlternet.Editor.Wpf.SelectionOptions.SelectBeyondEol> allows selection in the virtual space (if the

NavigateOptions.BeyondEol is enabled)

e <xref:Alternet.Editor. Wpf.SelectionOptions.UseColors> instructs the editor to use the same foreground colors for selected
text as the ones used for unselected text (i.e, any syntax highlighting will be visible). Note for this to be useful. The section
background color must be in contrast with all possible foreground colors.

o <xref:Alternet.Editor. Wpf.SelectionOptions.HideSelection> causes the selection to become invisible when the editor loses
focus.

o <xref:Alternet.Editor.Wpf.SelectionOptions.SelectLineOnDbIClick> allows the user to select the entire line by double-clicking

onit.

o <xref:Alternet.Editor.Wpf.SelectionOptions.DeselectOnCopy > causes the selection to be removed after the user performs
copy selection to clipboard operation.

o <xrefAlternet.Editor.Wpf.SelectionOptions.PersistentBlocks> causes the selection to be retained after the user has finished
making it and has started other navigation.

o <xrefAlternet.Editor.Wpf.SelectionOptions.OverwriteBlocks > causes the new input to overwrite the currently selected text.

o <xref:Alternet.Editor. Wpf.SelectionOptions.SmartFormat> allows formatting blocks when pasting according to the rules
defined by the syntax parser.

o <xref:Alternet.Editor. Wpf.SelectionOptions.WordSelect> causes whole words to be selected rather than individual characters

when using mouse selection.
o <xrefAlternet.Editor.Wpf.SelectionOptions.DrawBorder> causes Edit control to draw a border around the selection

o <xrefAlternet.Editor.Wpf.SelectionOptions.SelectLineOnTripleClick> allows selecting whole line rather than a single word by
triple clicking the mouse

o <xref:Alternet.Editor.Wpf.SelectionOptions.DeselectOnDblClick> causes the selection to be cleared by mouse dblclick.

o <xref:Alternet.Editor. Wpf.SelectionOptions.ConvertToSpacesOnPaste> specifies that selection should convert all tabs to
spaces in the pasted text when the Lines.UseSpaces is on.

o <xref:Alternet.Editor.Wpf.SelectionOptions.RtfClipboard> causes the selection to copy its content in text and RTF formats.

o <xref:Alternet.Editor.Wpf.SelectionOptions.ClearOnDrag> causes selected text to be cleared after dragging from an external
source

o <xref:Alternet.Editor.Wpf.SelectionOptions.CopyLineWhenEmpty > allows copying whole lines when the selection is empty

o <xref:Alternet.Editor.Wpf.SelectionOptions.DisableCodeSnippetOnTab> - disables code snippets insertion when pressing
the Tab key.

o <xref:Alternet.Editor. Wpf.SelectionOptions.SelectWordOnCtrIClick> causes the word under the cursor to be selected when
the user holds the Ctrl key.

e <xref:Alternet.Editor.Wpf.SelectionOptions.ExtendedBlockMode> causes text being typed to be inserted into all selected
lines within the rectangular block.

It is possible to programmatically select text by setting <xref:Alternet.Editor.Wpf.ISelection.SelectionStart> and
<xref:Alternet.Editor.Wpf.ISelection.SelectionLength> properties, or with the help of
<xref:Alternet.Editor.Wpf.ISelection.SetSelection*> method.

The selected text can be retrieved or set via the <xref:Alternet.Editor.ISelection.SelectedText> property.

A developer can perform various operations on the current selection. Some of them are:

e <xref:Alternet.Editor. Wpf.ISelection.IsEmpty > checks whether there is any text selected.
o <xref:Alternet.Editor. Wpf.ISelection.SetSelection*> selects the specified rectangular area.
o <xref:Alternet.Editor Wpf.ISelection.SelectAll> selects the whole document.

o <xref:Alternet.Editor. Wpf.ISelection.Cut>/<xref:Alternet.Editor. Wpf.ISelection.Copy >/ <xref:Alternet.Editor.Wpf.ISelection.Past
e> performs standard operations like copying text to the clipboard, cutting text to the clipboard and pasting text from the
clipboard.

e <xref:Alternet.Editor.Wpf.ISelection.IsPosInSelection*> checks if the specified position lies within the selection.
o <xref:Alternet.Editor.Wpf.ISelection.Clear> clears selection (this does not affect the text itself).
e <xref:Alternet.Editor.Wpf.ISelection.Move*> moves or copies the currently selected text to a new location.

o <xref:Alternet.Editor. Wpf.ISelection.SmartFormat> formats the selected text according to the rules defined by the syntax
parser.

o <xrefAlternet.Editor.Wpf.ISelection.LowerCase>/<xref:Alternet.Editor. Wpf.ISelection.UpperCase>/<xref:Alternet.Editor Wpf.|
Selection.Capitalize> change the case of the currently selected text.

e <xref:Alternet.Editor.Wpf.ISelection.UnIndent>/<xref:Alternet.Editor.Wpf.ISelection.UnIindent> change the indent of the
currently selected text.

In fact, if some action can be performed by the user, it can also be performed programmatically:

if(ledit.Selection.IsEmpty)
edit.Selection.SelectedText =
"(" + edit.Selection.SelectedText + ")";

This code encloses the currently selected text in brackets.

Searching and Replacing

Among the operations that can be performed on the text are searching and replacing text strings. Unlike the standard multi-line
text editor, which does not implement such functionality, the <xref:Alternet.Editor. Wpf.TextEditor> control comes with built-in
support for them. It's ready to use out-of-the-box: when the user presses the Ctrl+F key combination, the search dialog box

appears:
_;l::\ub.'u.c class Person ~ | public vl 3% 2
private string myName = "N/A"; Y& @
P A e nD -
Pflvate T WhRe = Aa Bl & Current Document ”

=] I <summary > e
/// Declare a Name property of type string:

f </ summary>
- public string Name T
{
= get
{

return myName;

}

The text-replace dialog can be activated by pressing Ctrl+H. Besides using the Ul to control the process, all the operations can be
executed programmatically by calling the corresponding methods of the <xref:Alternet.Editor Wpf.TextEditor>.

For example, to find some string, you could use the following code:

edit.Find("some string");

Or, with regular expressions:

edit.Find(" ", SearchOptions.RegularExpressions, new
System.Text.RegularExpressions.Regex("a.?z"));

To activate the Search Dialog:

edit.DisplaySearchDialog();

Moreover, the Search and Replace dialog box functionality is not hardwired: you can replace the dialog box by implementing the
<xref:Alternet.Editor.Wpf.ISearchDialog> interface, assigning it to the editor by setting its SearchDialog property. The built-in
dialog can serve as a good example and a starting point.

If you need to perform the Search and Replace operation without any user interaction, you can use the ReplaceAll method.

le.:

edit.ReplaceAll("bad", "good", SearchOptions.WholeWordsOnly |
SearchOptions.EntireScope, out count);

After this, every occurrence of a "bad" word in the entire text will be replaced by the "good".

Note that this would move the cursor position to the place where the last replacement has been made, so if you need it to be
genuinely unnoticeable for the user, you need to enclose this call in the code which saves and restores the current cursor position:

System.Drawing.Point pos;

pos = edit.Position;

edit.ReplaceAll("bad", "good", SearchOptions.WholeWordsOnly |
SearchOptions.EntireScope, out count);

edit.Position = pos;

Search/Replace function can work across multiple documents. To allow the search to find text in multiple editors, you will need to
set SearchManager.Shared to true and provide a list of editors to perform a search in its InitSearch event handlers and
return/navigate to the appropriate editor in the GetSearch event handler:

SearchManager.SharedSearch.Shared = true;

SearchManager.SharedSearch.InitSearch +=
new InitSearchEvent(DoInitSearch);

SearchManager.SharedSearch.GetSearch +=
new GetSearchEvent(DoGetSearch);

private void DoInitSearch(object sender, InitSearchEventArgs e)

{
e.Search = GetActiveTextEditor() as ISearch;
foreach (var edit in editors.Values)
{
edit.SearchGlobal = true;
e.SearchList.Add(edit.Source.FileName);
}
}
private void DoGetSearch(object sender, GetSearchEventArgs e)
{
foreach (var edit in editors.Values)
{
if (edit.Source.FileName == e.FileName)
{
e.Search = edit as ISearch;
break;
¥
}

Scroll Bars and Split View

The appearance and behavior of scrollbars are controlled by the <xref:Alternet.Editor.Wpf.TextEditor.Scrolling> property.

The behavior of the scrollbars is controlled by ScrollingOptions.

You can also use Scrolling.Options to allow <xref:Alternet.Editor.Wpf.TextEditor> to split its content by setting
<xref:Alternet.Editor.Wpf.TextEditor.AllowVerticalEditorSplit> property. The splitter is displayed in the left-bottom corner allowing

to split TextEditor's content vertically.

<xref:Alternet.Editor.Wpf.ScrollingOptions.SmoothScroll> - if set, the display is updated as the user drags the scrollbar.
Otherwise, the display is updated only when the user releases the scrollbar thumb. Disabling this option may improve

performance on slow machines.

<xref:Alternet.Editor.Wpf.ScrollingOptions.ShowScrollHint> - if set, a hint window showing the new number of the topmost
line, is displayed whenever the user drags the scrollbar.

<xref:Alternet.Editor.Wpf.ScrollingOptions.UseScrollDelta> - if set, editor window content is scrolled by several characters
when caret becomes invisible rather than one character

<xref:Alternet.Editor.Wpf.ScrollingOptions.SystemScrollbars> - if set, system scroll bars are displayed; otherwise, custom
scrollbars are used.

<xref:Alternet.Editor.Wpf.ScrollingOptions.FlatScrollbars> - if set, scroll bars are displayed in flat style. This option works
only if SystemScrollBars is on.

<xref:Alternet.Editor.Wpf.ScrollingOptions.AllowSplitHorz> - allows displaying horizontal splitting buttons in the scroll area.
This option works if SystemScrollBars is off and the control has the Dock property set to DockStyle.Fill.

<xref:Alternet.Editor.Wpf.ScrollingOptions.AllowSplitVert> - allows displaying a vertical splitting button in the scroll area.
This option works if SystemScrollBars is off and the control has the Dock property set to DockStyle.Fill.

<xref:Alternet.Editor.Wpf.ScrollingOptions.HorzButtons> - allows displaying additional buttons in the horizontal scrolling
area. This option works only if SystemScrollBars is off.

<xref:Alternet.Editor.Wpf.ScrollingOptions.VertButtons> - allows displaying additional buttons in the vertical scrolling area.

This option works only if SystemScrollBars is off.

VerticalScrollBarAnnotations - allows displaying scroll bar annotations that show special items, such as line modifications,
syntax errors, search results bookmarks, and the caret position, throughout the entire document within the scroll bar.

Individual annotation kinds are controlled by <xref:Alternet.Editor. Wpf.Scrolling.Annotations> property.

Multiple Views & Split View _ O %

Thizs dema shows ability to visually split the edit control to provide different views of the same text as well as various scrolling options.

Split Scrolling
[Mlow Horizontal Split] Horizontal Scroll Bar Additional Buttons [Display Scroll Hint Scrollbar Annotations
[Mlow Vertical Split [Vertical Scroll Bar Additional Buttons Smooth Scroll [] System Scrall
#region Copyright (c) 2816-2821 Alternet Software .

e

AlterNET Code Editor Library

Copyright (c) 2816-2821 Alternet Software
ALL RIGHTS RESERVEﬂ

http:/ www.alternetsoft.com
contact@alternetsoft.com
#f X
#endregion Copyright (c) 2816-2821 Alternet Software =
4 3
#region Copyright (c) 2816-2821 Alternet Software -
i* —_—
AlterNET Code Editor Library .
-

emem Ll A% AR e AART AT o ol o

Visual Themes

Visual themes allow changing the appearance of all graphical elements in the editor by setting
<xref:Alternet.Editor.Wpf.TextEditor.VisualThemeType> or <xref:Alternet.Editor Wpf.TextEditor.VisualTheme> type properties.
Light and Dark visual themes are included, and custom appearance can be configured via a custom visual theme.

Visual Theme: | Dark ~

Gutter

The gutter is the area to the left of the text, which displays various indicators for the corresponding lines of text. These indicators
include bookmark indicators, line wrapping indicators, line style icons, line numbers, outlining buttons, and line modification

markers.

n 27
28 - private void buttonl_Click{object sender, System.Windows.RoutedEventargs e}
29 {
® o NS
» 31 }
32 }
33 }

All the images displayed in the gutter are contained in the gutters image list. The following code gives an example of how to add a
custom icon to this list from another image list (for example, the one dropped on the form during design time):

edit.Gutter.Images.Images.Add(imageListl.Images[0]);

The mechanism of the line styles icons allows you to define how the editor will display certain lines of the text.
The most common use for this is the indication of breakpoint lines and the current execution point.

For example, the following code defines the style to be used for breakpoints.

style id = edit.LineStyles.AddLineStyle("breakpoint",
Color.White, Color.Red, Color.Gray, 11, LineStyleOptions.BeyondEol);

(Note in the current version, image # 11 corresponds to the built-in breakpoint indicator image, and #12 corresponds to the
current execution point image.

Later on, some lines of the text can be assigned the style:

edit.Source.LineStyles.SetLineStyle(line_no, style_id);

(Note that here and in the other places of this document, line numbers start at 0.)

Note: Every line can have at most one style at any given time. If you need to remove line style for some particular line, call:

edit.Source.LineStyles.RemovelLineStyle(line_no);

For <xref:Alternet.Editor Wpf.TextEditor> control, the appearance of the gutter is controlled by the following properties:
<xref:Alternet.Editor. Wpf.IGutter.Width>, <xref:Alternet.Editor. Wpf.IGutter.BrushColor>,

<xref:Alternet.Editor. Wpf.IGutter.PenColor> and <xref:Alternet.Editor. Wpf.IGutter.Visible>. Width property specifies the width of
the gutter area, <xrefAlternet.Editor Wpf.IGutter.BrushColor> specifies the background color of the gutter area,
<xref:Alternet.Editor.Wpf.IGutter.PenColor> specifies the color of the gutter line, and <xref:Alternet.Editor.Wpf.IGutter.Visible>
indicates whether or not to draw the gutter. Note that the gutter can adjust its width if line numbers or outlining is on and painted
on the gutter. <xref:Alternet.Editor. Wpf.TextEditor> allows drawing line numbers to visually indicate position of the visible lines
inside the document. To enable line numbers, you need to set <xref:Alternet.Editor.Wpf.GutterOptions.PaintLineNumbers> to true.
Turning <xref:Alternet.Editor. Wpf.GutterOptions.PaintLinesOnGutter > option enables drawing line numbers on the gutter area;
turning it off causes line numbers to be painted immediately after the gutter area. The appearance of line numbers is controlled
by the <xref:Alternet.Editor Wpf.IGutter>'s properties: <xref:Alternet.Editor. Wpf.IGutter.LineNumbersStart>,

<xref:Alternet.Editor. Wpf.IGutter.LineNumbersForeColor>, <xref:Alternet.Editor.Wpf.IGutter.LineNumbersBackColor>,
<xref:Alternet.Editor. Wpf.IGutter.LineNumbersAlignment>, <xref:Alternet.Editor. Wpf.IGutter.LineNumbersLeftindent> and
<xref:Alternet.Editor. Wpf.IGutter.LineNumbersRightindent>, which are intuitively understandable.

Like Microsoft Visual Studio editor, <xref:Alternet.Editor.Wpf.TextEditor> provides the ability to visually track modified lines. To
enable this feature, you need to turn <xref:Alternet.Editor.Wpf.GutterOptions.PaintLineModificators> on. When LineModificators
are on, they indicate lines that were changed since the last saving. New changes are marked with Yellow color; changes that were
done before the last saving are marked with Lime color. Colors can be customized using
<xref:Alternet.Editor.Wpf.IGutter.LineModificatorChangedColor> and
<xref:Alternet.Editor.Wpf.IGutter.LineModificatorSavedColor> properties.

Reaction to mouse clicks and double-clicks on the gutter area can be implemented by assigning handlers to the
<xref:Alternet.Editor.Wpf.TextEditor.GutterClick> and <xref:Alternet.Editor.Wpf.TextEditor.GutterDblClick> events.

Bookmarks

Just as with often used reference books, the process of navigating the text can be made more efficient with the usage of
bookmarks. Two kinds of bookmarks are supported by the <xref:Alternet.Editor. Wpf.TextEditor>: plain and numbered. The former
can be toggled for the current line using the Ctrl+K Ctrl+K key combination sequence and can be navigated in a cyclical manner
using the Ctrl+K Ctrl+N (next bookmark) or Ctrl+K Ctrl+P (previous bookmark). The numbered bookmarks have a different

flavor: there can be up to ten bookmarks, each having a number associated with it.

using System;
f/f <summary>
/// This tutorial shows how properties are an integral part of the C# programming !
LA </summary >
-lpublic class Person
{
] private string myMName = "N/A"; | |
private int myAge = 8;
- HT csummary >
//f Declare a Name property of type string:
HT </ summary»
A = public string Name...
= fi7 <suUmmary >
//f Declare an Age property of type int:
fAf </summary>
mubkld e dmk A L |

Toggling the numbered bookmark is performed using the Ctr{+K Ctrl+#, and navigation to the specific bookmark is performed by
pressing the Ctrl+# key combination (where # is any of the digits from 0 to 9). There can be only one plain bookmark in any line.
Numbered bookmarks do not have such a limitation. However, only the indicator for the first bookmark in the line will be
displayed in the gutter area if <xref:Alternet.Editor.Wpf.GutterOptions.PaintBookMarks> is set to true.

Like most other things in the editor, bookmarks can be manipulated programmatically. Note that the list of bookmarks belongs to
the text source, so multiple views of the same source share the same set of bookmarks.

The following code snippet sets the plain bookmark at the current position:

System.Drawing.Point pos = edit.Position;
edit.Source.BookMarks.SetBookMark(pos, int.MaxValue);

To set the numbered bookmark, replace int. MaxValue by the bookmark number (0..9).
To clear all the bookmarks set in the text source, call the <xref:Alternet.Editor.Wpf.IBookMarks.ClearAllBookMarks> method:

edit.Source.BookMarks.ClearAllBookMarks();

Navigating to the location defined by a particular bookmark can be performed as follows:

edit.Source.BookMarks.GotoBookMark(index);

Code Editor supports named bookmarks with descriptions and hyperlinks. The user may see a description in a tooltip window
when moving the cursor over the bookmark and launching the browser with the specified URL when clicking on the bookmark.
Such bookmarks can be set using the following code:

edit.Source.BookMarks.SetBookMark(edit.Position, O,
"Bookmarkl", "This is Named Bookmark", "www.alternetsoft.net");

If you need to have custom images, you can change the bookmark indicator images by assigning a custom image list:

edit.Gutter.BookMarkImageIndex =
edit.Gutter.Images.Images.Count;
edit.Gutter.Images.Images.Add(imagelListl.Images[@]);

(This code uses the first image from the imagelist1, which you could, for example, create by just dropping a new Image List from
the toolbox on the form. For more examples of working with the gutter, refer to the corresponding section of this manual.)

You can configure bookmarks navigation to work across multiple documents. These documents should be added to the
BookMarkManager class, and every document should have the FileName property assigned.

BookMarkManager.Register(edit.Source);
BookMarkManager.SharedBookMarks.Activate += new
EventHandler<ActivateEventArgs>(DoActivate);

private void DoActivate(object sender, ActivateEventArgs e)

{
foreach (var edit in editors.Values)
{
if (edit.Source.FileName == e.FileName)
{
ActivateEditorTab(editor);
break;
}
}
}

In this mode, all bookmarks will be stored in a global list inside BookmarkManager instead of every individual TextEditor control
allowing global navigation through them.

Code Completion (Intellisense)

Although the main purpose of an editor is to be a convenient tool for the user to enter the text, quite often, guidance from the
editor can significantly improve the effectiveness of the work process. When editing a text with some structure (i.e, a computer
program in some language), there are often well-defined input possibilities in certain contexts. For example, for many
programming languages, the sequence "someobject.” should be followed by one of the existing field names. To assist the user in
such situations, the text editor can activate a popup list containing all the methods that can be accessed from the current scope.

= public override string ToString(}

{
this. _
} b @Age int Person.Age { get; set; }
@ Equals Declare an Age property of type int:
- public st @ GetHashCode
{ @ GetType
Conso @, MemberwiseClone rties");
&, myAge
g myMame
pPerso ®
& Name -
/P ge associated with the person:
Conso P o= 1s - {B}", person);

If there is a partial word immediately to the left of the current cursor position, the first entry that starts with that word is
highlighted. The user can then continue typing up until the method he meant is selected or use the up and down arrow keys to
navigate the list and then insert the complete method name by pressing the Enter key.

Automatic Code Completion Invocation

In most cases, the Code Completion list and Signature Help for method parameters are provided by the parser alongside the list

of characters, such as period "." or open parens "(", which invoke code completion automatically as user types. The task of code
completion is to have the list of available choices appear automatically as user types. For example, after the user types

"someobject.” the list of class members for that object is expected to appear, and after they type "somemethod(" the tooltip
showing the list of parameters for that function is expected to appear. It can be customized to show those popups only if the user
stops input for some short delay after typing the activating symbol ("." or "(").

The automatic code completion is implemented by Roslyn C# and Visual Basic parsers, TypeScript/JavaScript parsers, as well as
by Advanced C#, J#, Visual Basic, VBScript, JavaScript, C, XML, and Python parsers.

For example, automatic code completion is attempted after typing a period ('.") following a member (member access expression),
typing an open brace ('(') following a member (invocation expression or object creation expression), typing a period ('.') inside
using section, typing less sign ('<') inside XML comments, etc. This feature is implemented as close as possible to the Visual
Studio .NET editor, so it works in an intuitively understandable way. On top of that, Roslyn-based parsers are configured to invoke

code completion when the user starts typing identifiers.

When these parsers are used, you still can control some aspects of code completion, for example, delay before the code
completion window appears, using the <xref:Alternet.Editor.Wpf.TextEditor.NeedCodeCompletion> event, which will be discussed
later. Moreover, for advanced parsers, you can register your types and objects, namespaces, and assemblies for code completion
using the CompletionRepository property of <xref:Alternet.Syntax.SyntaxParser>.

To make types from the most commonly used assemblies such as System, System.Drawing, and System.Windows.Forms to be
available for code completion, you can call the following method.

csParserl.Repository.RegisterDefaultAssemblies();

If you need to provide code completion for assemblies declared in other assemblies, you need to register these assemblies this
way:

csParserl.Repository.RegisterAssembly("System.Xml");

You may need to register types for code completion that are not declared in the assembly but are present in the source code
somewhere else.

For Roslyn-based parsers, you can rely on the underlying solution/project/document object model:

csParserl.Repository.RegisterCodeFiles(new string[] { "MyFile.cs" });

For one of advanced parsers you need to create <xref:Alternet.Syntax.SyntaxParser>, load this file into the
<xref:Alternet.Syntax.Parser.Strings> object, and then add parsed <xref:Alternet.Syntax.SyntaxTree> to the code completion
repository. The following code demonstrates how it can be accomplished:

ISyntaxParser parser = new Alternet.Syntax.Parsers.Advanced.CsParser();
parser.Strings = new TextStrings();
parser.Strings.LoadFile("MyFile.cs")

parser.ReparseText();
csParserl.CompletionRepository.RegisterSyntaxTree(parser.SyntaxTree);

Code Outlining

The <xref:Alternet.Editor.Wpf.TextEditor> control supports outlining, a text navigation feature that can make navigation of large
structured texts more effective. The essence of outlining lies in defining sections of the text as structural units that, once collapsed,

can be visually replaced by a shorter representation, i.e,, by an ellipsis (".."). During the text navigation, the user can dynamically
switch between the collapsed and complete representation of any particular section. Sections can be nested.

public override string ToString()|.

{

ublic static void Main(
e : return "Name = " + Name + ", Age = " + Age;

{

[a)

onsole.WritelLine ("Simple Prop 1

// Create a new Person ob

[}
m

Person person = new Perscon

int out the name and the age ass

cle.Writeline ("Person details

The section can be expanded by clicking on the "+" button, double-clicking the proxy text, or pressing the Ctrl+M Ctrl+M key

sequence (in the default key mapping). The section can be collapsed by clicking on the "-" button or pressing the Ctrl+M Ctrl+M

key sequence. All the sections can be globally collapsed or expanded using the Ctrl+M Ctrl+L key sequence.

Outlining is the property of the <xref:Alternet.Editor.Wpf.TextEditor> control itself, not of the
<xref:Alternet.Editor.Wpf.TextSource>. Thus it is possible to have two views of the same text, one with outlining and another
without, or even to have completely different structural parts defined.

All the aspects of the outlining are controlled via the <xref:Alternet.Editor.Wpf.TextEditor.Outlining> property of the
<xref:Alternet.Editor.Wpf.TextEditor>. The outlining can be enabled or disabled using the
<xref:Alternet.Editor.Wpf.IOutlining.AllowOutlining> property either in design time or at runtime. The look of the outlining is
controlled by the <xref:Alternet.Editor Wpf.IOutlining.OutlineColor> and <xref:Alternet.Editor.Wpf.IOutlining.OutlineOptions >
properties.

There are two approaches to defining outline sections.
Direct Definition of Outline Sections

Outline sections can be explicitly defined by calling the appropriate methods of the <xref:Alternet.Editor.Wpf.TextEditor.Outlining>
property, i.e.

edit.Outlining.Outline(new Point(®, ©), new Point(int.MaxValue, ©), 0, "...").Visible = false;"

This code snippet defines the first level section consisting of the entire first line of the text, using ellipsis ("...") as the proxy text and
being in a collapsed state.

While this approach is simple, it has one significant drawback: if sections represent structural units defined by the content of the
text, and the user can edit the text, sections have to be constantly kept in sync with the text, which can be a non-trivial task.

Automatic Definition of Outline Sections Using the Syntax Parser

To provide automatic code outlining, the syntax parsing framework has to be employed. This approach may seem to be more
complex at first look; however, it provides consistent results. To implement this approach, a class descending from the
<xref:Alternet.Syntax.SyntaxParser> class needs to be defined, and the <xref:Alternet.Syntax.SyntaxParser.Outline*> method
needs to be implemented. This method will be frequently called by the <xref:Alternet.Editor.Wpf.TextEditor > whenever the text
changes, to provide the user with a smooth editing experience, the implementation should be relatively fast.

Code Editor includes parsers that support automatic outlining for C#, Visual Basic, J#, JavaScript, VBScript, Ansi-C, SQL, HTML, XML,
and Python languages.

The following example demonstrates how to implement a parser that marks every line starting from the sharp ("#") sign as a
separate outline section.

private void InitializeComponent()

this.parserl = new XParser();

public class XParser: SyntaxParser

public XParser()

Options = SyntaxOptions.Outline;

public override int Outline(IList<IRange> Ranges)

{

}

{
{
}
{
}

Ranges.Clear();
for(int i = @; i < Strings.Count; i++)
{
if(Strings[i].ToString().StartsWith("#"))
{
Ranges.Add(new OutlineRange(
new Point(@, i),
new Point(int.MaxValue, i),
e, "...", false));

}

return Ranges.Count;

Code Editor Extended Features (WPF)

Code Editor provides advanced text editing functionality such as customizable keyboard mapping, HyperText handling, spell-
checking integration, printing and exporting, macro recording and playback and miscellaneous display features.

Keyboard Mapping

While the <xref:Alternet.Editor.Wpf.TextEditor> closely mimics the key-mapping common to most of Microsoft's products, it is
completely customizable: you can add or change behavior of certain keys or even define an entirely different key-mapping.

To assign an action to some key combination, use the following code:

private void edit_Action()

{
}

edit.KeylList.Add(Keys.W | Keys.Control | Keys.Alt, new
KeyEvent(edit_Action));

This would make the Ctrl+Alt+W key combination execute the edit_Action method.

Or, to pass some object to the key handler:

private void edit_Action(object o)

{
}

edit.KeylList.Add(Keys.W | Keys.Control | Keys.Alt, new
KeyEventEx(edit_Action), some_object);

To remove some key handler, regardless of whether you have added it yourself, or it is the default one, call:

edit.KeylList.Remove(Keys.A | Keys.Control);

The code described before is used to manage the key handling in the default state. In fact, the key handling is slightly more
complex than that: the <xref:Alternet.Editor.Wpf.TextEditor>'s key handling mechanism can be in different states, other than the
default one. Every state has its own key mapping table. Key mapping for bookmark operations can serve as a good example: after
the user presses the Ctrl+K key combination, combinations Ctrl+K, Ctrl+N, Ctrl+P, Ctr(+L (the list is incomplete) obtain the new
meaning. If a key combination is pressed for which there is no assignment in some non-default state, then the state is changed to
default, and the combination is evaluated in the new context. <xref:Alternet.Editor Wpf.TextEditor> defines four different non-

default states, but you can implement your own:

edit.KeylList.Add(Keys.W | Keys.Control, null, @, 5);
edit.KeyList.Add(Keys.Tab, new KeyEvent(edit_Action), 5, 5);

This code creates a state that is activated by pressing the Ctr{+W key combination, and in which the Tab key causes the
edit_Action to be executed. The state is changed back to default when the user presses some key other than the Tab. Up until now
we have only examined the cases where you add some new functionality, or suppress some existing one. There also might be a
case, when you want to use an entirely different key mapping, for example, to simulate some other environment your users are
familiar with. To accomplish this, it is necessary to completely clear the current key mapping, and then to assign every function
performed by the editor to some key. Note, that this really means every function: even such trivial things as cursor navigation and
insertion of a new line are performed according to the key mapping.

For example, the following code assigns the editor's key-mapping to a single action defined: "Select All", which is assigned to the

Ctrl+X key combination

edit.KeyList.Clear();
edit.KeylList.Add(Keys.X | Keys.Control,
((EventHandlers)edit.KeyList.Handlers)SelectAllEvent);

URL handling

The <xref:Alternet.Editor. Wpf.TextEditor> can be set up to handle pieces of text that look like some kind of an URL by setting the
<xref:Alternet.Editor. Wpf.IEditHyperText.HighlightHyperText> property to true. The handling consists of highlighting those pieces
of text, and of processing clicks on them. By default, clicking the URL causes the operating system default action to be performed
(i.e. launching a browser or an email client), however, you can override this behavior by assigning the
<xref:Alternet.Editor.Wpf.TextEditorJumpToUrl> event handler.

private void edit_JumpToUrl(object sender, UrlJumpEventArgs e)

{
if(is_our_url(e.Text))
{
process_url(e.Text);
e.Handled = true;
}
}

Spellchecker Interface

The <xref:Alternet.Editor.Wpf.TextEditor> supports the spell-as-you-type spell checker integration. To enable spelling for the
editor, set its <xref:Alternet.Editor Wpf.IEditSpelling.CheckSpelling> property to true and assign the WordSpell event handler.

The following artificial example considers any word longer than 3 characters to be correct:

private void edit_WordSpell(object sender, WordSpellEventArgs e)
{

e.Correct = e.Text.Length > 3;

}

this.edit.WordSpell += new WordSpellEvent(this.edit_ WordSpell);

Incorrect words are displayed with the wiggly underline (the default color is red, but it can be changed using the
<xref:Alternet.Editor.Wpf.IEditSpelling.SpellColor> property). In real-life scenarios you would need to use some third-party
software/dictionary to really check the text. Another alternative would be using some word-list file, many of them, including
Public Domain or free ones, can be found on the Internet. Refer to a Miscellaneous quick start project, which has one of these
dictionaries.

Another useful feature supported by <xref:Alternet.Editor.Wpf.TextEditor> is AutoCorrect, allowing you to auto correct words
when typing. To enable this feature you need to set property AutoCorrection to true and handle the AutoCorrect event to provide
replacements for words that were typed incorrectly.

Printing and Exporting
<xref:Alternet.Editor.Wpf.TextEditor > includes support for printing, print previewing, and exporting to RTF and HTML.

Exporting can be performed as simple as this:

edit.SaveFile(FileName, new RtfExport());

Printing tasks are performed and configured via the Printing property of the <xref:Alternet.Editor Wpf.TextEditor>.

For example, to show the print preview dialog, call:

edit.Printing.ExecutePrintPreviewDialog();
<xref:Alternet.Editor.Wpf.TextEditor > control supports adding user-defined information while printing.
To add some text to the footer:

edit.Printing.Footer.CenterText = "draft";

Text in headers and footers can contain substitution tags. The standard ones are: [page], [pages], [date], [time] and [username].

Macro Recording and PlayBack

<xref:Alternet.Editor.Wpf.TextEditor > has macro recording and playback capabilities. It allows recording sequences of keyboard

commands and playing them later. Note that mouse input is not recorded.

This feature enables you to store a set of frequently used editing commands. Set MacroRecording property to start/finish macro
recording. Use the PlayBack method to repeat the stored command sequence.

White-space Display

It is sometimes desirable for the user to see the codes which influence the layout of the text and are normally invisible themselves.
These codes are space, tab, end-of-line, and the end-of-file (not really a code), and are often collectively referred to as the white-
space. The TextEditor has the option to display them, and to control their appearance.

{1
= private -string -myName -

= .IFN’)“‘";\I
-~ private -int ‘myAge =-0;9

The display of the white-space is enabled using the <xref:Alternet.Editor.Wpf.IWhiteSpace.Visible> property. The color used to
display white-space codes is determined by the <xref:Alternet.Editor. Wpf.IWhiteSpace.SymbolColor> property, and the characters
used to display those codes are determined by EofSymbol, EolSymbol, SpaceSymbol, and TabSymbol properties.

Line Separator

It is possible to have lines of the editor to be separated by thin horizontal lines, and to have the current line highlighted. This
behavior is controlled by the <xref:Alternet.Editor.Wpf.TextEditor.LineSeparator> property.

The following options are available:

o <xref:Alternet.Editor. Wpf.SeparatorOptions.HighlightCurrentLine> specifies that the current line in the editor will be
highlighted using the HighlightColor for background.

o <xrefAlternet.Editor.Wpf.SeparatorOptions.HideHighlighting> specifies that the highlighting of the current line should be
hidden when the editor loses focus.

o <xrefAlternet.Editor. Wpf.SeparatorOptions.SeparateLines> specifies that a thin horizontal line of LineColor should be
drawn between each line of text.

e <xref:Alternet.Editor. Wpf.SeparatorOptions.SeparateWrapLines> specifies that each visual line of text produced as a result
of word-wrap should be separated in the same manner as separate lines (works only if the SeparateLines option is also

specified).

o <xref:Alternet.Editor Wpf.SeparatorOptions.SeparateContent> specifies that line separator will be drawn between sections
of the code (for example between methods), if TextEditor control is associated with SyntaxParser supporting this feature.

Code snippets

The code snippets are the next code completion provider, allowing to insert frequently used fragments of code. Code snippets can
be inserted into the editor by pressing Tab key after snippet shortcut or by executing code snippet popup window with Ctrl + K +
X key sequence, or activated programmatically, by calling the CodeSnippets method of the <xref:Alternet.Editor.Wpf.TextEditor>.

The purpose of the code snippets is to permit the user to quickly enter one of the predefined fragments of text. If the code snippet

has fields declared, the editor allows modifying their values causing updating field values inside the whole snippet.

The following picture illustrates the usage of the code snippets.

public static void Main ()
{

for (int I = 0; 1 < lepgth; i++)
{
Insert Snippet: i
} gl #if ~
3Ll #region
gk attribute
3L exception

3L invoke W

Shortcut: if

sk _ Code snippet for if statement
indexer
interface

Hidden and Read-Only Lines

<xref:Alternet.Editor.Wpf.TextEditor > control can mark certain lines to be readonly or hide them at all so the user can't see them.
This can be achieved by using <xref:Alternet.Editor Wpf.TextSource SetLineHidden*> and
<xref:Alternet.Editor.Wpf.TextSource.SetLineReadonly*> methods. For hidden lines to take effect, the
<xref:Alternet.Editor.Wpf.DisplayStrings.AllowHiddenLines> property needs to be set to true. Read-only lines can be made
visually different from editable lines by setting <xref:Alternet.Editor.Wpf.TextEditor.ReadonlyBackColor> property. Sometimes it's
required to mark certain lines to be both hidden and readonly, this way they can not be deleted if the user selects the outer block

containing them and tries to delete it.

using System;
Spublic class MyClassl

1

= public string MyFunc()

1

Console.Writeline("Simple Properties™);

// Create a new Form object:
System.Windows.Forms.Form forml = new System.Windows.Forms.

// Print out the name and the text associated with the form
Console.Writeline("Form details - {@}", forml);

Structure Guidelines

<xref:Alternet.Editor.Wpf.TextEditor > control can display dashed lines between syntax blocks for some parsers (Roslyn-based,
TypeScript and some advanced parsers), helping the user to better understand the structure of the document being edited. This
behavior is controlled by a Parser and can be switched off by the StructureGuideLines parser option.

777 </summarys R
public int Age —_
{
- get
{
return myAge;
}
= set
{
myAge = value;
}
}
= public override string ToString() L]
{ w
4 b
Minimap

A Minimap (code outline) gives you a high-level overview of your source code, which is useful for quick navigation and code
understanding. A file's minimap is shown on the right side of the editor. You can click the shaded area to quickly jump to different

sections of your file.

Person

myName = "N/A";
myAge = 0;

return myName;

return myName;

Syntax Parsing

Text parsing is performed by one of the <xref:Alternet.Syntax.Parser> non-visual components. In the very basic version, it controls
syntax highlighting. In the case of more advanced parsers, it enables additional features such as code completion, code outlining,

code formatting, and syntax error underlining.

public override string ToString()

public static void Main() {
1 return “Name = * « Name « °, Age = " » Age;

la,Writeline ("Simpl= Pra)

Create a new Person cbject:

Ferscn person = new Ferscn().:

Frint out the name the age associated with the perscn:
Frint ocut the name the age associated with the perascn:

« PEEICR):

WrigeLine ("Perscn details

- {0}", person);:
Increment the Age prope
persor ge += 15
- iteline ("Person details = {0}", person):
Semething ("Name: {0}, Age: {1}", p.name, p.age):

If there's no parser assigned, <xref:Alternet.Editor.SyntaxEdit> or <xref:Alternet.Editor.Wpf.TextEditor> does not perform any
parsing-related functions. To be able to use those features, you need to create a <xref:Alternet.Syntax.Parser> component
explicitly and assign it via the Lexer property of either these controls directly or their TextSource.

C#/VisualBasic (Roslyn) and TypeScript/JavaScript parsers
The package includes parsers based on Microsoft Code Compiler technology (Roslyn) and Microsoft TypeScript compiler.

These parsers provide full syntax and semantic model of the text edited by SyntaxEdit control. It enables additional features such
as code completion, code outlining, code formatting, highlighting types in different colors, and underlying syntax and semantic
errors and warnings to be identical to the ones found in the Microsoft Visual Studio editor.

LSP Parsers

LangServer-based parsers rely on external servers to provide features like auto complete, go to definition, find all references, and
alike. The Code Editor package includes parsers based on this technology for C/C++, Java, Python, Lua XML, and PowerShell.
There are two variations of each parser - one that relies on the Language server to be installed on the target machine and one that
includes all required payload (such as clang libraries for c/c++ or embedded python distribution) in the form of embedded
resources. Java embedded parser contains LSP-server files but not Java installation itself, which needs to be installed on target
machines independently.

Advanced Parsers

The Code Editor package comes with several advanced parsers, each one designed to perform syntax highlighting for certain
languages. Each of these parsers is derived from the <xref:Alternet.Syntax.SyntaxParser> class implementing
<xref:Alternet.Syntax.ISyntaxParser> interface and performs syntax analysis of the text in a specific programming language to
provide advanced code editing features discussed above. These parsers use hard-coded parsing algorithms instead of generic
regular-expression-based rules, making them significantly faster than generic ones (these will be explained further). Currently, we
have advanced parsers for the following languages: Python, C#, J#, Visual Basic.NET, Ansi-C, VBScript, JavaScript, HTML, SQL, T4,
XML, and XAML. These parsers perform complete syntax parsing of the source code to build the syntax tree, which is used to
implement all mentioned features. Please note that these parsers might not support full language specification, especially
language constructs which were added to these programming languages recently.

Python and XAML parsers are implemented in their own namespaces/assemblies, <xref:Alternet.Syntax.Parsers.Python> and

<xref:Alternet.Syntax.Parsers XAML> respectively.

For Python/IronPython, we have implemented a complete semantic analysis of the text, which builds a semantic model of the
whole text displayed in the editor (and also processes included files). The semantic model is used by the Code Completion service
to provide auto-completion and method parameters help. This approach was inspired by studying Microsoft Code Analysis

("Roslyn") implementation, which will be explained below.

Generic parsers

Writing your own parser to comply with a programming language specification is a non-trivial task, not to mention keeping it up
to date with full language specifications as the language evolves. However, for a simple task of syntax highlighting, it's normally
not required. To perform syntax highlighting, you can rely on a generic parsing engine, which uses finite-state automaton rules
driven by regular expressions matching the parsed text. Although creating good syntax-highlighting rules for some complex
languages can still be tricky, you will rarely, if ever, have to do it yourself. The Code Editor includes more than 30 ready-to-use
syntax schemes for the most commonly used modern programming languages. In rare cases, you need to implement a parser for
some custom language; one of these parsers can be a good starting point. Syntax schemes are stored on disk as xml files, and the
built-in visual design-time parser editor is provided to simplify the process of their creation. If you need most of these languages
in your application, consider using one of the <xref:Alternet.Syntax.Parsers.Generic.SchemeParser> descendants, which contains
appropriate language schemes in the form of an assembly resource.

Creating a new generic parser is described in the Advanced Topics section of the documentation.

TextMate parser

TextMate parser is based on the TextMate grammar that powers syntax highlighting and advanced text editing features of Visual
Studio Code.

TextMate parser uses Oniguruma regex engine and includes grammar definitions for 40+ programming languages. On top of
syntax highlighting, it supports features like indent-based outlining and structure guidelines, code snippets, and code completion
for the symbols already found in the text.

Creating own Generic Parser Schema

Although the Code Editor comes with a collection of parsers, creating a new one may sometimes be necessary. In this chapter, we

will develop a new parser for some trivial fictitious language.

First, let us informally describe the language we are willing to parse. The valid text in this language consists of zero or more
groups enclosed in curly brackets ("{*, "}"), each containing zero or more numbers separated by commas. We want to distinctly
highlight punctuation symbols and numbers and report erroneous input.

The first step is to create a new Parser object by dropping it from the toolbox and assigning it to some
<xref:Alternet.Editor.SyntaxEdit> by picking the newly created parser from the list of choices appearing for the Lexer property of
the editor.

After having done this, we can start exploring the SyntaxBuilder. It is invoked by pressing the "..." button for the Scheme property
of the parser object in the Properties window.

ol Syntax Scheme Builder b4
(] Syntax Scheme Editor | Style Properties
o) 3 Styles Marme:
+ B |ermr=- | Font Styles
numbers
- I
whitespace Description: ml
punctuation [| [htalic
1S
- Sites Fore Color: (] Underline
= O sikeou
Back Color:
| ONone v| O plsin Tex
AaBbYyZz
Load Save Clear QK Cancel

Now you should see the SyntaxBuilder dialog box appears. If you wanted to use some existing scheme, you would have pressed
the Load button. However, this time we will create a new scheme from scratch. After completing it, you can press the Save button
to make it possible to use this new scheme in other projects.

The next thing to do is to define syntax highlighting styles used in the scheme. This is accomplished by clicking the right mouse
button on the Styles node to bring the context menu and choosing the Add Style command.

After creating a style, you should name it and define its visual attributes. For this example, we will need four styles: number,
punctuation, whitespace, and error. Let us define numbers with olive color and italic text style, punctuation symbols to be blue,
and syntax errors to have a red background and white foreground. The whitespace style is defined as having no distinct markup.

Note that when the editor is linked to the parser, it takes font styles to render text fragments from the parser's styles instead of
using its own FontStyle. It applies to all parsers, not just generic ones.

Then we define the states of the parser. For our example language, there will be two states: default and block. States are defined
similarly to styles by choosing the Add State command in the context menu when clicking on the States node. In turn, states
contain syntax blocks created by the Add Syntax Block command from the context menu of a state.

A syntax parser is essentially a state machine driven by the text. Transition conditions are expressed in terms of regular
expressions, which are checked against the parsed text at the current position up to the next end of the line. Expressions are tried
in the syntax block definition order. The first successful match determines the syntax block. The text position is advanced by the
length of the match, and the text is assigned the style specified for that syntax block. The matched text is additionally matched
against the list of the reserved words associated with this syntax block. If a match occurs, the style defined by the ResWord Style is
used instead of the one defined by the Style property. The state of the state machine is changed according to the Leave State
property of the syntax block, which can specify any of the states, including the same state in which the syntax block resides,
meaning no state transition is to take place.

The state machine for the language we are parsing is described in the following table and deserves some comments.

The whitespace syntax block is only necessary because of the presence of a match all error syntax block. In the more common
case where no error highlighting is used, no style (the same as the whitespace style that we have defined) would be used for the
text that does not match any syntax blocks. The error syntax block is the last in the sequence and matches a single character that
any of the preceding rules has not matched. The block syntax block is matched when the opening curly bracket is met. The bracket
itself is assigned the punctuation style, and the state machine changes its state into the block state (note that state name, style
name, and syntax block style name coincidences are not required).

In the block state, the whitespace, and error syntax blocks serve the same purpose as in the default state. Number and comma
syntax blocks cause numbers and commas to have the corresponding styles, and the end syntax block, which matches the closing

curly bracket, causes the transition back to the default state.

State Syntax Regular Style Leave
Block Evprassion State
Default
whitespace \s+ whitespace default
block i punctuation block
error . error default
Block
whitespace \s+ Whitespace block
number \d+ Number block
comma , Punctuation block
End b Punctuation default
Error Error block

Automatic Code Completion for arbitrary programming language

If there is no <xref:Alternet.Syntax.SyntaxParser> for your language, you can consider implementing automatic code completion
using <xref:Alternet.Editor.SyntaxEdit.NeedCodeCompletion> event:

private void edit_NeedCodeCompletion(object sender, Alternet.Syntax.CodeCompletionArgs e)

{
if ((e.CompletionType == CodeCompletionType.ListMembers) ||
(e.CompletionType == CodeCompletionType.CompleteWord) ||
((e.CompletionType == CodeCompletionType.None) && (e.KeyChar == ".")))
{
// Look at Manual Code Completion, list members section
e.Interval = (e.CompletionType != CodeCompletionType.None)
? 0 : 500;
}
if(e.CompletionType == CodeCompletionType.ParameterInfo ||
e. CompletionType == CodeCompletionType.None &&
e.KeyChar == "(")
{
// Look at Manual Code Completion, parameter info section
e.Interval = (e.CompletionType != CodeCompletionType.None)
? 0 : 500;
}
}

Depending on the kind of language you are working with, and whether you are using some complete library to work with that
language or doing everything yourself, the actual information on symbols will be retrieved in different ways:

e if you are using some third-party library, look for something that resembles the name "Symbolic Information API" or like in
the manual for that library;

e if you are developing your own language or at least your own engine for some existing language, you probably already
know what exactly to do to acquire the information necessary for code completion to work;

e [f you are working with the .NET family of languages, CLR Reflection API should be of use for this purpose. The sample
program supplied with the package provides a good starting point for working with it.
Manual Code Completion

If you use Code Editor with a parser that does not fully support automatic code completion, you can still provide some guidance
to the users as they type by implementing some of the code completion logic manually.

Global Settings

If the application contains more than one instance of the editor, it is often desired to share their Ul settings and provide the user
with a centralized facility to manage them. Code Editor is shipped with Customize quick start project that demonstrates how this

can be accomplished.

It includes the SyntaxSettings class which is a holder for the following set of settings:
e The font used to display the text in the editor
e Syntax highlighting styles (i.e., foreground and background colors, font style)
e Whether the following features are enabled or not:

o Show margin

o Show gutter
o URL highlighting
o Outlining
o Word wrapping
o Use of spaces instead of tabs for indents
e The width of the gutter area
e The position of the margin
e Tab-stop positions
e Navigation options
e Selection options
e Outline options
e Scrollbar options
e Color Themes
To the GlobalSettings class, its instance must be created, i.e.:
private SyntaxSettings GlobalSettings;

GlobalSettings = new SyntaxSettings();
The settings can be retrieved from some particular <xref:Alternet.Editor.SyntaxEdit> controls as follows:
GlobalSettings.LoadFromEdit(edit);

And then assigned to some other editor like this:

GlobalSettings.ApplyToEdit(edit);

Settings can be stored in the file:

GlobalSettings.SaveFile("GlobalSettings.xml");

And later on, loaded from that file:

GlobalSettings.LoadFile("GlobalSettings.xml");

As the file's name suggests, settings are stored in XML format. Note that in the real application, you would check for the existence
of that file, and also, this file should probably be located somewhere down the user's Application Data folder.

To make handling the global settings even easier, the Customize demo project includes an example settings dialog.

Syntax Settings d

Options Trar
Fonts and Colars [JWord Wrap Vertical scroll bar [White space
Additional Highlight Urs Horizontal scroll bar Line modificator
Keyboard
Drag and drop text [Forced scrollbars [Line separator
Gutter&Margin
Show Gtter Gutter width:
[] Show Margin Margin position:
Line Numbers

[] Show Line Numbers
[] Display on Gutter

Cancel

All you need to do to use it is to declare and construct its instance:

using Alternet.Editor.Dialogs;
using Alternet.Editor.Wpf.Dialogs; // for WPF edition

private DlgSyntaxSettings Options;
Options = new DlgSyntaxSettings();
And later on, when the user requests the editor settings dialog, perform something similar to the following:

Options.SyntaxSettings.Assign(GlobalSettings);
if(Options.ShowDialog() == DialogResult.OK)

{
GlobalSettings.Assign(Options.SyntaxSettings);
// for each syntaxEdit or TextEditor used in the application
GlobalSettings.ApplyToEdit(edit);

}

Localization of dialogs

All string constants used in dialogs are localized to a few foreign languages. CodeEditor supports dialog localization to German,
French, Spanish, Russian, and Ukrainian languages. The following code demonstrates how to switch to the German language:

Using Alternet.Common;

CultureInfo oldcInfo = Thread.CurrentThread.CurrentUICulture;
Thread.CurrentThread.CurrentUICulture = new CultureInfo("de");
try
{

StringConsts.Localize();
}
finally

{
Thread.CurrentThread.CurrentUICulture = oldcInfo;

Scripter Overview

AlterNET Scripter is a component library designed to integrate C#, Visual Basic, TypeScript, JavaScript, Python, and IronPython
scripts into your WinForms and WPF .NET desktop applications. It allows extending the application logic by implementing custom
functionality or automating custom tasks without recompiling and redeploying the application.

Script Execution

The main components that provide script-executing functionality for supported programming languages are:
<xref:Alternet.Scripter.ScriptRun> for C# and VisualBasic; <xref:Alternet.Scripter.Python.ScriptRun> for Python;
<xref:Alternet.Scripter.IronPython.ScriptRun> for IronPython and <xref:Alternet.Scripter.TypeScript.ScriptRun> for TypeScript and
JavaScript. These components encapsulate the functionality of running standalone C#, Visual Basic, Python, IronPython,
TypeScript, and JavaScript script files or projects with forms and resources; they allow referencing third-party assemblies and
registering application-defined objects to be accessible in the scripts.

| Y AlterNET Software Demo Explorer - [m] X
= Studio for C&/Visual Basic .
& Winforms Debugger Integration Run
AlterMET Studic :
Code Editor Open Project

Syntax Editor
Form Designer

This demo shows how script debugger control can be integrated into the application.

= QuickStart Projects More Information:
Editor Script Debugger includes ready-to-use Breakpoints, Call Stack, Output, Error List, Watches, Local Variables Ul controls as well as Debugger Toolbar and
Scripter Menu.
= Debugger
Debugger Integration

Debug My Script
Debug Remote Script
Designer
WPF
= Studio for Python
WinForms
WPF
= Studio for lronPython
WinForms
WPF
= Studio for TypeScript
WinForms 2 st
WPF i

= Studio for LSP/DAP e oo =l T P o P
WinForms 1 Do P Mol s 8.
WPF

AlterNET Studio 9.5

Copyright @ 2016-2023 ALTERNET SOFTWARE PTY LTD f\ Lj E_|2
All rights reserved http:/fwww.alternetsoft.com 1

Script Debugging

The following components provide a fully-featured script debugging engine for the supported programming languages:
<xref:Alternet.Scripter.Debugger.ScriptDebugger> for C# and VisualBasic;
<xref:Alternet.Scripter.Debugger.Python.ScriptDebugger> for Python;
<xref:Alternet.Scripter.Debugger.IronPython.ScriptDebugger> for IronPython;
<xref:Alternet.Scripter.Debugger.TypeScript.ScriptDebugger> for TypeScript and JavaScript.
<xref:Alternet.Scripter.Debugger.Dap.ScriptDebugger> for debugger that relies on Debugger Adapter Protocol.

These debuggers support Start, Stop, Break and Continue commands, step-by-step execution, breakpoints, expression evaluation,
viewing local variables and watches, stack tracing, and in the case of C#/VisualBasic, multiple thread debugging.

AlterNET Scripter includes a set of quick-start projects, each designed to highlight the component's specific features.
Below is a brief overview of these projects, most of them available for C#/Visual Basic, Python, IronPython, and TypeScript

AlterNET Studio - demonstrate how to run and debug script files and projects. Example files and projects are located in the
demo\resources\debugger folders.

CallMethod - a set of quick-start projects for all supported languages which demonstrate how to execute script methods and pass
application objects to the script.

CustomAssembly - demonstrates how to use external assemblies in the scripts

EvaluateExpression - shows how ScriptRun can evaluate expressions, which again can access some objects defined in the
application

Object Reference - shows how application-defined objects can be accessed by bane from the script.
Threading - shows how scripts can run asynchronously.

Debuggerintegration - Shows how debugger logic can be integrated into the application to debug scripts (application-
independent scripts in case of C#/Visual Basic).

For C#/Visual Basic only:
DebugMyScript - demonstrates how scripts executed by the application can be debugged by a separate Script Debugger tool.

DebugRemoteScript - Shows how debugger logic can be embedded in the application to debug scripts that access the application
APl indirectly.

Isolated script - Shows how to load a script in the separate AppDomain so that it can be unloaded afterward and execute methods
init.

For Debugger Adapter Protocol (DAP):
CppLlvmDapDebugger - Shows how debugger logic can be integrated into the application to debug standalone C++ projects.

PythonDapDebugger - Shows how debugger logic can be integrated in the application to debug standalone Python projects.

Creating your first project

To see C# scripting in action, place the <xref:Alternet.Scripter.ScriptRun> component on the form, and write the following code in
the Button click event handler:

scriptRunl.ScriptSource.FromScriptCode("public class ScriptTest { public static void Main() {
System.Windows.Forms.MessageBox.Show(\"Hello World \");} }");

scriptRunl.ScriptSource.WithDefaultReferences();

scriptRunl.Run();

The first line of the code populates the Script source, the second line adds references to the most common System assemblies,
and the third runs the code.

C# and Visual Basic Script execution

The basic script execution workflow requires setting a script source, adding references to the assemblies used in the script;
registering application-defined objects accessible to the script; compiling the script to a dynamically-linked library or standalone
executable program, and running some method in that DLL or executing the program.

Setting up Script Source

All properties and methods required to set a script source are encapsulated in <xref:Alternet.Scripter.ScriptRun.ScriptSource>

property of the <xref:Alternet.Scripter.ScriptRun> class; below are the essential ones:
<xref:Alternet.Scripter.IScriptSource.Files> - specifies a collection of source files to be compiled and executed;
<xref:Alternet.Scripter.ScriptSource.ScriptCode> - specifies source in a form of text string;

<xref:Alternet.Scripter.ScriptSource.ProjectName>, <xref:Alternet.Scripter.ScriptSource.ProjectFileName> and
<xref:Alternet.Scripter.IScriptSource.RootNamespace> - contain project-related information if ScriptSource is loaded from the
project.

<xref:Alternet.Scripter.IScriptSource.Imports> - contains global namespaces in case Visual Basic is used, so you do not need to
specify them in the code;

<xref:Alternet.Scripter.IScriptSource.Conditionals> - contains lists conditional compilation symbols;

<xref:Alternet.Scripter.IScriptSource.References> - contains a list of assembly references for types used in the scripts; this can
include reference to the calling application.

<xref:Alternet.Scripter.IScriptSource.SearchPaths> - contains search paths to look for the third-party references in case they're not
supplied with a full path.

<xref:Alternet.Scripter.IScriptSource.Resources> - contains a list of RESX files with resources.
<xref:Alternet.Scripter.IScriptSource.FromScriptFile*> - loads Script Source from the single source file;
<xref:Alternet.Scripter.IScriptSource.FromScriptCode*> - loads script from code in the form of a text string;
<xref:Alternet.Scripter.IScriptSource.FromExpression*> - sets ScriptSource to the string expression.

<xref:Alternet.Scripter.IScriptSource.FromScriptProject*> - loads code from Visual Studio Project

Adding assembly references:
The assemblies where these types are declared need to be referenced so that the script can use their types.

The following code populates references with the most commonly used assemblies:
scriptRunl.ScriptSource.WithDefaultReferences();

For technology set to WinForms (which is the default option), it contains the following assemblies:

System,System.Drawing System.WindowsForms;

Note that this list is different in the case of .NET Core targets.

You can reference additional assemblies by adding them to the References property:

scriptRunl.ScriptSource.References.Add("System.Data");

This method accepts a full path; you can also add references to third-party assembilies if the script uses types from it.

Registering objects to be used in the script

Application objects accessible by the script need to be added to the Globalltems collection, along with the object's name, which

will be used in the script, and the object's type or the object itself.
Object value itself is only required during script execution; for script compilation, object name and type are sufficient.

<xref:Alternet.Scripter.ScriptRun> adds references to the assemblies, which contain types of the objects being added to

<xref:Alternet.Scripter.ScriptRun.Globalltems> automatically.

Note that <xref:Alternet.Scripter.ScriptRun.AssemblyKind> property needs to be set to Dynamically Linked Library for it to be
loaded in the running application process and be able to access application-defined objects.

Below is a sample code that registers application-defined objects in the script.

public class MyItem

{
public MyItem(string text)
{
this.Text = text;
}
public string Text;
¥

scriptRunl.GlobalItems.Add(new ScriptGlobalItem("MyItem", obj: new MyItem("hello")))

Script Compilation and Execution

Once <xref:Alternet.Scripter.ScriptRun.ScriptSource> is set, next step is to Compile the script; this step is performed implicitly
when the script runs the first time or when the Script source is changed (this includes changes of script files externally)

Script compilation engine is implemented by <xref:Alternet.Scripter.IScriptHost>; there are two implementations of
<xref:Alternet.Scripter.IScriptHost> provided: a legacy engine based on <xref:Alternet.Scripter.CodeDOM.CodeDOMScriptHost>
wrapper around command-line C# or Visual Basic compiler, and <xref:Alternet.Scripter.Roslyn.RoslynScriptHost> based on new
Microsoft Roslyn Code compiler technology - the last one is used by default, and it allows some additional features such as
referencing to another script source dynamically by using #load directive and gives more control on code parsing and

compilation.

Scripts can be compiled into a dynamically-linked library or in a standalone executable; this is controlled by the
<xref:Alternet.Scripter.ScriptRun.AssemblyKind> property. <xref:Alternet.Scripter.IScriptHost.GenerateModulesOnDisk> allows to
control whether the assembly being compiled will reside in memory or on the disk; and

<xref:Alternet.Scripter.IScriptHost. ModulesDirectoryPath> specifies the location of compiled assembly where compiled modules
will be stored. Platform target (AnyCPU, AnyCpu32BitPreferred, x86, x64, or Auto) is controlled by Platform property (by default,

it's set to Auto and takes the target platform from the application).

Once the compilation is executed, the Compiled property will be set to true in case compilation was successful, and
<xref:Alternet.Scripter.IScriptHost>'s <xref:Alternet.Scripter.IScriptHost.ScriptAssembly> property will point to the assembly
compiled from the script source. Otherwise <xref:Alternet.Scripter.IScriptHost>'s properties
<xref:Alternet.Scripter.IScriptHost.CompileFailed> will be set to true and <xref:Alternet.Scripter.IScriptHost.CompilerErrors> will
be populated with compiler errors. Please note, <xref:Alternet.Scripter.IScriptHost.CompilerErrors> may contain compiler

warnings even in case of successful compilation.

Upon successful compilation, you can subsequently call <xref:Alternet.Scripter.ScriptRun.Run*>,
<xref:Alternet.Scripter.ScriptRun.RunMethod* >, or their asynchronous variants: <xref:Alternet.Scripter.ScriptRun.RunAsync*> and
<xref:Alternet.Scripter.ScriptRun.RunMethodAsync*>; in case of standalone executable

<xref:Alternet.Scripter.ScriptRun.RunProcess*> should be used instead.

Python and IronPython Script Execution and Debugging

Scripter contains components that implement python script compilation, execution, and debugging. These components are
<xref:Alternet.Scripter.Python.ScriptRun> and <xref:Alternet.Scripter.Debugger.Python.ScriptDebugger> for Python and
<xref:Alternet.Scripter.IronPython.ScriptRun> and <xref:Alternet.Scripter.Debugger.lronPython.ScriptDebugger>

These components are installed on the AlterNet Scripter.Python and AlterNet Scripter.IronPython tabs in Visual Studio.

Script execution is based on the Python.NET and IronPython open-source scripting engines, allowing Python programmers
seamlessly integrate python code with the .NET framework. These engines support executing Python code and accessing .NET
types and objects of the host application from the script.

<xref:Alternet.Scripter.Python.ScriptRun> and <xref:Alternet.Scripter.IronPython.ScriptRun> provides a very similar interface to
NET <xref:Alternet.Scripter.ScriptRun>; the former uses Python to execute Python scripts, while the latter creates in-memory .NET
assembly out of Python code.

<xref:Alternet.Scripter.Python.ScriptRun> and <xref:Alternet.Scripter.IronPython.ScriptRun> can execute single files, Python
projects (which can be loaded/saved to a .pyproj file), or evaluate Python expressions.

The main difference between Python.NET and IronPython scripting engines is that Python.NET supports up to Python 3.7
language specification and can use most third-party libraries like NumPy or Pandas that rely on Python/Cython code. In
comparison, IronPython supports up to Python 2.7 language specification. It also provides multi-threading script execution
capabilities, unlike Python.NET, which can not execute scripts in multiple threads simultaneously.

<xref:Alternet.Scripter.Debugger.Python.ScriptDebugger> and <xref:Alternet.Scripter.Debugger.lronPython.ScriptDebugger> are
based on Microsoft.Scripting debugging engine; they allow incorporating debugging logic in the same application and do not
have a limitation of .NET debugger, which requires a debugger and script to be debugged running in the separate application
processes. It has most of the functionality that the .NET Script debugger provides, except for multi-threaded debugging.

EX siterNET Studio - IronPython - o »

File Edit Search Debug Help
V-ORXBB?CACR NS C -0 e IGE

{} global vy Project Explorer Code Explorer
p
Scriptpy = 7] Project
1 - + &%, Dependencies
2 import MyModule Y Script.py

3 from datetime import

class MyClass:
["= simple example class"™"

7 i = 12345

E

G def init__ (self):

18 self.my_instance_var = 34
11

12 def fiself):

13 xx = “hello world®

14 return xx

15 —_—

P 15
17 a=[1, 2,3, 4,5) I
13 e = date.today()

D 19 ¢ = MyClass() i

20

21 bW o= ()

iz

23 HessageBox. Show("From Module: ® + MyModule.GetString())
4
a5 def MyFunction{message): -

Cutput Breakpoints Call Stack Locals Watches Error List Threads FindResults
& o (System.im32) = 123 A
= & a(ronPython Runtime.List) = {IronPython. Runtime List}
& 0] (System.int32) = 1
F (1] (System.nt32) = 2
F (2] (Systemln32) = 3
& [3] (System.Int32) = 4

(Lirock1 6 Chiews i s oty 8

TypeScript/JavaScript Script Execution and Debugging

Alongside component libraries for .NET and Python-based script compilation, execution, and debugging, we provide very similar
components for TypeScript/JavaScript: <xref:Alternet.Scripter.TypeScript.ScriptRun> and
<xref:Alternet.Scripter.Debugger.TypeScript.ScriptDebugger>

These components are installed on the AlterNet Scripter.TypeScript tab in Visual Studio.

Script execution is based on Microsoft ClearScript, which provides the v8 high-performance open-source JavaScript engine. It
supports executing JavaScript code and accessing .NET types and objects of the host application from the script.

<xref:Alternet.Scripter.TypeScript.ScriptRun> provides a very similar interface to .NET <xref:Alternet.Scripter.ScriptRun>; the main
difference is that it does not create .NET assembly and executes JavaScript code using the ClearScript engine.

The main difference in APl is that, unlike .NET Script Runner, the collection of referenced objects, types and .NET assembilies is
specified via <xref:Alternet.Scripter.TypeScript.IScriptHost.HostltemsConfiguration> property; as opposed to
<xref:Alternet.Scripter.ScriptRun.Globalltems >/ <xref:Alternet.Scripter.IScriptSource.References> properties;
<xref:Alternet.Scripter.ScriptRun.RunMethod* >/ <xref:Alternet.Scripter.ScriptRun.RunMethodAsync* > are replaced with
<xref:Alternet.Scripter.TypeScript.ScriptRun.RunFunction*> /< xref:Alternet.Scripter. TypeScript.ScriptRun.RunFunctionAsync*>.

The following code adds references to the most commonly used assemblies and registers RunButton to be accessible from the
script:

“csharp scriptRun.ScriptHost.HostltemsConfiguration.AddSystemAssemblies().AddObject("RunButton”, btNETFromScript);

<xref:Alternet.Scripter.TypeScript.ScriptRun> can execute single files, typescript projects (which can be
loaded/saved to a JSON file), or evaluate TypeScript/JavaScript expressions.

Note that order of TypeScript/JavaScript files in a project is important, as they get executed one by one.

TypeScript compilation service uses host configuration to automatically create all support files containing
typescript definitions. The following line needs to be placed on top of the user's script to access .NET types
and objects from the host configuration:

///<reference path="clr.d.ts" />

<xref:Alternet.Scripter.Debugger.TypeScript.ScriptDebugger> is based on Google Chrome debugging development
tools; it allows incorporating debugging logic in the same application and does not have the limitation of the
.NET debugger, which requires a debugger and script to be debugged running in the separate application
processes. It has most of the functionality that the .NET Script debugger provides, except for multi-threaded
debugging and automatic retrieval/evaluation of local variables.

I [TypeScriptDebugger](images/TypeScriptDebugger.png)

Script Debugging

A lot of times, an application developer needs to allow users to debug the scripts they write. We provide tools to debug script
code and a set of Ul widgets to build custom debugging interfaces.

BN altertieT studio - o £

File Edit ‘iew Search Debug Help
V- ORXADBVPCDARRAS O -0 rmNGHE

“§ DebuggerTest Prograrm W Main(string(] args) Project Explorer Code Explorer Propertic *
DebuggerTestes = DebuggerTest
185 [5TAThread] - + dh Dependencies
196 pn.bli: statif. wold Main(string[] args) C* DebuggerTest.cs
197 { ¥ DebuggerTest_Second.cs
198 C.fl = 143
199
268 ChildrenVisibilityTestClassBase childrenvisibilityTestClass = r
2a1
202 CustomEvaluatorsTest();
283
& o4 | :
285 LambdaEventHandlerTest();
286 I return;
27
208 war 1ist = new Systes.Collections,Generdc,Listmystructa();
209 1ist.add(new mystruct()); =
218 1ist.Add(new mystruct{}); s
211 1ist.Add{new mystruct{)} -
2132 Properties - DebuggerTest_Second.cs
213 if ((args != null) 8& (args.length > @)} i ¥ Misc
214 foreach (steing str in args) BuildAction Compile
215 Console.Writeline(str); Copyle<al DoNotCopy
4 b

COutput Breakpoints Call Stack Locals Watches Error List Threads FindResuls
+ K args (System.Strngl)) = System.String[) A
= J childrenVisibilityTestClass ([DebuggerTest Programs ChildrenVisibility TestClass) = {DebuggerTest Program + ChildrenVisibility TestClass)
= & list (Systern. Collections Generic. List'1 < DebuggerTest mystruct>) = {System. Collections. Generic.List 1 [DebuggerTest rryitruct]]
= [0] {System Object] = [DebuggerTest.mystructi
IProp (System.Int32) = 0
@ f (System.Single) = O -

Lime: 204, Char: 1 Readonly

C# and Visual Basic Script Debugging

Script Debugger engine is implemented in <xref:Alternet.Scripter.Debugger> assembly, and it is based on CLR debugging COM
interfaces low-level APl to debug .NET applications.

https://msdn.microsoft.com/en-US/library/ms404484(v=vs.110).aspx

The main component of script debugging is the <xref:Alternet.Scripter.Debugger.ScriptDebugger > class. It provides all commonly
used debugging features like step-by-step execution, stopping on breakpoints, examining local variables, expression evaluations,

etc.
Below is a summary of <xref:Alternet.Scripter.Debugger.ScriptDebugger> most essential properties, methods, and events:

Methods:

<xref:Alternet.Scripter.Debugger.ScriptDebugger.StartDebugging> - starts executing the program from the entry point.

<xref:Alternet.Scripter.Debugger.ScriptDebugger.AttachToProcessAsync*> - Attaches to the already started process in which
scripts are to be debugged.

<xref:Alternet.Scripter.Debugger.ScriptDebugger.StopDebuggingAsync* > - Stops the debugging session.

<xref:Alternet.Scripter.Debugger.ScriptDebugger.Break> - Causes the given process to pause its execution so that its current state
can be analyzed.

<xref:Alternet.Scripter.Debugger.ScriptDebugger.Continue> - Continues given process to the next breakpoint or until the process
finishes.

<xref:Alternet.Scripter.Debugger.ScriptDebugger.Stepinto> - Executes one statement of code; steps into the following function
call, if possible.

<xref:Alternet.Scripter.Debugger.ScriptDebugger.StepOver> - Executes one statement of code; steps over the following function

https://msdn.microsoft.com/en-US/library/ms404484(v=vs.110).aspx

call, if possible.

<xref:Alternet.Scripter.Debugger.ScriptDebugger.StepOut> - Executes remaining lines of the function; steps out of the currently
executed function.

<xref:Alternet.Scripter.Debugger.ScriptDebugger.ActivateThread*> - Switches debugging to the specified thread.
<xref:Alternet.Scripter.Debugger.ScriptDebugger.SwitchToStackFrame*> - Switches debugging to the given stack frame.

<xref:Alternet.Scripter.Debugger.ScriptDebugger.SetRunToPositionBreakpoint*> - Causes the debugger to stop at the specified
position.

Following methods may take a considerable amount of time. Therefore they're implemented asynchronously:

<xref:Alternet.Scripter.Debugger.ScriptDebugger.EvaluateExpressionAsync*> - Evaluates expression in the current stack frame,
with or without child properties.

<xref:Alternet.Scripter.Debugger.ScriptDebugger.EvaluateCurrentExceptionAsync*> - Evaluates the exception thrown by the
debugger.

<xref:Alternet.Scripter.Debugger.ScriptDebugger.GetStackFramesAsync*> - Gets a list of method calls currently on a stack.
<xref:Alternet.Scripter.Debugger.ScriptDebugger.GetThreadsAsync*> - Gets a list of active threads.
<xref:Alternet.Scripter.Debugger.ScriptDebugger.GetVariablesInScopeAsync*> - Gets all local variables in the given stack frame.
<xref:Alternet.Scripter.Debugger.ScriptDebugger.TrySetNextStatementAsync*> - Sets the execution point to the specified line.
<xref:Alternet.Scripter.Debugger.ScriptDebugger.GetExecutionPositionAsync* > - Gets the current execution point.

Properties:

<xref:Alternet.Scripter.Debugger.ScriptDebugger.IsStarted> - Indicates whether the debug process has started.
<xref:Alternet.Scripter.Debugger.ScriptDebugger.State> - Gets current debugger state.

<xref:Alternet.Scripter.Debugger.ScriptDebugger.ScriptRun> - in case Debugger used to debug standalone executable, contains

all information required to compile and run the script.

<xref:Alternet.Scripter.Debugger.ScriptDebugger.GeneratedModulesPath> - Specifies a directory where assemblies for the scripts
being debugged are located.

<xref:Alternet.Scripter.Debugger.ScriptDebugger.Breakpoints> - Returns collection of debugger breakpoints.

<xref:Alternet.Scripter.Debugger.ScriptDebugger.EventsSyncAction> - A function that could be provided by the application to
sync raised debugger events if required (for example, perform Control.Invoke)

Events:

<xref:Alternet.Scripter.Debugger.ScriptDebugger.ActiveThreadChanged> - Occurs when the thread to be debugged changes.

<xref:Alternet.Scripter.Debugger.ScriptDebugger.DebuggerErrorOccured> - Occurs when the debugger encounters an error
during debugging session.

<xref:Alternet.Scripter.Debugger.ScriptDebugger.DebuggingStarted> - Occurs when the debugging session is started.
<xref:Alternet.Scripter.Debugger.ScriptDebugger.DebuggingStopped> - Occurs when the debugging session is stopped.
<xref:Alternet.Scripter.Debugger.ScriptDebugger.ExecutionResumed> - Occurs when debugging is resumed after being paused.

<xref:Alternet.Scripter.Debugger.ScriptDebugger.ExecutionStopped> - Occurs when debugging is paused.

<xref:Alternet.Scripter.Debugger.ScriptDebugger.LogMessageReceived> - Occurs when a debug message is received.

<xref:Alternet.Scripter.Debugger.ScriptDebugger.StackFrameSwitched> - Occurs when the debugger is switched to the stack

frame.

<xref:Alternet.Scripter.Debugger.ScriptDebugger.StateChanged> - Occurs when debugging state is changed (when the debugger
is started, stopped, or paused)

.NET Script Debugging best practices

The main issue we've faced with debugging is that it's impossible to embed debugging logic in the same process where scripts
are executed, as the debugger process will need to freeze itself when debugging. Refer to the following blog for more details:

https://blogs.msdn.microsoft.com/jmstall/2005/11/05/you-cant-debug-yourself/
Therefore we see two main options for script debugging to work:

1. Script is compiled as a dynamically linked library and is linked to the calling application (which is the most straightforward
way for scripts to be able to access application-defined objects). In this case Script debugger must be a separate process that
attaches to the primary application process and allows to debug script code in it. The script debugger can be made look like
it belongs to the same application (which is outside of the scope of this tutorial), but it has to be in a separate process.

In this mode, Script Debugger does not compile or execute the script itself; instead, it relies on the primary application. It receives
the application process id, source, and project file along with the name of the assembly to be debugged via command-line
arguments; attaches to the application process and communicates with it by sending Start Debug or Stop Commands and
receiving a list of compilation errors or script completion events.

Refer to DebugMyScript quickstart projects for more details.

Note that you cannot debug the main application under Visual Studio and have Script Debugger attached to it simultaneously, as
Visual Studio will attach its own debugger.

Note that the target platform of the debugger and debuggee process need to be the same (for AlterNET Studio demo, it's set to
AnyCPU).

1. Script to be compiled in the separate executable, and debugging logic is embedded in the application itself. This option
requires either the script to be application-independent (which is not helpful if scripts are intended to extend application
logic) or access application-defined objects via interprocess-communication. Please refer to our Debuggerintegration/

DebugRemoteScript quickstart projects for more details.

These limitations do not apply to Python, IronPython, and TypeScript script debuggers.

https://blogs.msdn.microsoft.com/jmstall/2005/11/05/you-cant-debug-yourself/

Script Debugging Widgets

Scripter package includes a set of debugger widgets, toolbars, menus, and code editors available both for WinForms and WPF and
can be linked to any Debugger components for C#/VisualBasic, Python/IronPython, TypeScript/JavaScript, and Debug Server

Protocol-based debuggers.
These widgets include:

<xref:Alternet.Scripter.Debugger.Ul.Output> (<xref:Alternet.Scripter.Debugger.UL.Wpf.Output>) - to log debugger events or
application-specific messages.

Debugger Integration — O X
Eile Debug

PRI 5 G

DebuggerTest cs

738 I =
239 Console.Write(System.I0.File.Exists("ddsd™));

248

241 var tt = new TestInstance();

242 tt.InstanceMethod(34);

243 tt.InstanceMethod(34, 2);

244

245

2465 1++}

247 W(i);

243

249 var ttddd = System.Diagnostics.Debugz.IndentSize;
758 if (i % 188 == @)

251 system.Diagnostics.Debug.Writeline(™> " + 1i);
252

0253 int £ff = SecondClass.Func();

754 1

755 1

256

257 static int MyProp { get { return 165; } }

253 —_—
259 static int _sf = 77;
268

261 static void X(int 1) -

Output Breakpoints Call Stack Locals Watches Threads Emors Find Results

Debugger || General
» 54300

> 5460 Copy Ctrl+C

Clear All

<xref:Alternet.Scripter.Debugger.ULErrors> (<xref:Alternet.Scripter.Debugger.UL.Wpf.Errors>) - to display a list of compilation
errors.

Debugger Integration - O *
File Debug
P E NG5G
DebuggerTest cs
217 var st = v.Major.ToString(); i
218 st = MyFunc(v.Major.ToString());
219
228 string mys = "hella";
221
222 char ¢¢ = 't'_
223
224 int[] aaa = new int[] { 1, 2, 3 };
225 mystruct ms = new mystruct();
226 mystructl msl = new mystructl();
227 ms.i = 1@;
228 ms.IProp = 333;
229 msl.i = 11;
238 msl.ms1l.1i = 123;
231 int 1 = @;
232 for (int j = @; J € 18; j++)
233 I
234 1++)
235 3
236 LE]
2371 whil (true || 1 < 188)__
238 I "
239 Console.Write(System.I0.File.Exists("ddsd")); |
248 -
Output Breakpoints Call Stack Locals Watches Threads Emors Find Results
|l'3 3 Errors ||| ¢ 12 Warnings |
Code Description File
. 2 e DebuggerTest.cs
9 C51002 ; expected opY . DebuggerTest.cs
@ Cs0103 The name Clear All context DebuggerTest cs
Mext Error
Previous Error
L4 >

<xref:Alternet.Scripter.Debugger.Ul.Breakpoints> (<xref:Alternet.Scripter.Debugger.Ul.Wpf.Breakpoints>)- to display and navigate
through the list of breakpoints set in the source;

Debugger Integration — O

File Debug
b E N 55
DebuggerTest cs
199
@ |200 ChildrenVisibilityTestClass e childrenVisibilityT
281
282 CustomEvaluatorsTest();
283
24 VariableCaptureTest({"hi");
285 LambdaEventHandlerTest();
286 ' return;
287
208 var 1list = new System.Collections.Generic.list<mystruct>();
289 list.Add(new mystruct(});
@210 1ist.Add(new mystruct());
211 list.Add(new mystruct(});
212
213 if ((args != null) && (args.LlLength > @))
214 foreach (string str in args)
215 Console.Writeline(str);
216
217 var st = v.Major.ToString();
Q218 st = MyFunc(v.Major.ToString(});
219

Output Breakpoirts Call Stack Locals Watches Threads Emors Find Results

Mame

@ file: DebuggerTest cs line: 200
@ file: DebuggerTest cs line: 210
[E®file: DebuggerTest.cs line: 218

Delete Del
Disable

Go To Source Code

<xref:Alternet.Scripter.Debugger.Ul.CallStack> (<xref:Alternet.Scripter.Debugger.Ul.Wpf.CallStack>)- to display and navigate
through the list of method calls that are currently on the stack.

Debugger Integration

File Debug

bR IEE
DebuggerTest cs

58

58 return 1;

68 | 1

61

62 [H public string InstanceMethod(int xx)

63 I
O |64 int bb = ux + MyFunc();

65 return bb.ToString();

66 | 1

67

68 & public string InstanceMethod(int xx, int v)

59 I

7@ int bb = wx + MyFunc() + v;

71 return bb.ToString();

72 | 1

73 [1

74

75 = public struct mystruct

75 I

77 public int 1i;

78 public float +;

79

88 [public int IProp { get; set; }

81 3
Output Breakpoints Call Stack Locals Watches Threads Emors Find Results
MName
=3 DebuggerTest. Testinstance . InstanceMethod|int x¢) Line 64 c

DebuggerTest. Program.Main(string(] angs) Line 242 il

Switch To Frarme
Go To Source Code
Show Parameter Types
Show Parameter Names

< Show Line Mumbers

<xref:Alternet.Scripter.Debugger.Ul.Locals> (<xref:Alternet.Scripter.Debugger.Ul.Wpf.Locals>)- to examine values of local

variables once debugging code step-by-step.

Debugger Integration *
File Debug
bR I5E
DebuggerTest cs
228 string mys = "hella"; -
221
222 char cc = 't';
223
224 int[] aaa = new int[] { 1, 2, 3 };
225 mystruct ms = new mystruct();
226 mystructl msl = new mystructl();
227 ms.i = 1@;
228 ms.IProp = 333;
229 msl.i = 11;
238 msl.msl.i = 123;
231 int 1 = @;
o232 for (int j = @; j <« 18; j++)
233 I
234 1++}
235 1
236
237 while (true || i < 188)
238 .
239 Console.Write(System.I0.File.Exists("ddsd"));
248
241 var tt = new TestInstance(); u
242 tt.InstanceMethod(34); 1
243 tt.InstanceMethod(34, 2); -
Output Breakpoints Call Stack Locals Watches Threads Emors Find Results
----- & args (System_String[]) = System String[]
e ; o il drenVisibility TestClass)
[+ & list (System Collections Generic.List"1<Debugger Test mystruct=) = {System Ca Copy Ctri+C erTest mystruct]}
----- & st (System String) ="0" Copy Value
""" & mys (System.String) = "hella” Add to Watch
----- & cc (System Char) =t
- & aaa (System.Int32[]) = System Int32]] Set Value...
- & ms (DebuggerTest mystruct) = {DebuggerTest. mystruct}
[+ & ms1 {DebuggerTest mystruct1) = {DebuggerTest mystruct 1}
----- & i(System.Int32) =0
----- & | (System.Int32) =0

<xref:Alternet.Scripter.Debugger.Ul.Watches> (<xref:Alternet.Scripter.Debugger.Ul.Wpf.Watches>)- to examine values of watch

expressions when debugging.

Debugger Integration d
File Debug
bR IEE
DebuggerTest cs
228 string mys = "hella"; -
221
222 char cc = 't';
223
224 int[] aaa = new int[] { 1, 2, 3 };
225 mystruct ms = new mystruct();
226 mystructl msl = new mystructl();
227 ms.i = 1@;
2238 ms.IProp = 333;
229 msl.i = 11;
0230 msl.msl.i = 123;
231 int 1 = @;
232 for (int j = @; J ¢ 18; j++)
233 I
234 1++)
235 1
236
237 while (true || i < 1@8)
233 1 él
239 Console.Write(System.I0.File.Exists("ddsd"));
248
241 var tt = new TestInstance(); u
242 tt.InstanceMethod(34); |
243 tt.InstanceMethod(34, 2); -
Output Breakpoints Call Stack Locals Watches Threads Emors Find Results
[SEF B ms (Debugger Test mystruct) = {DebuggerTest g
i o IProp (System.Int32) = 333 Copy Ctrl+C
i@ f (System.Single) = 0 Copy Value
e i (System Int32) = 10 Clear Al
Add Watch...
Edit Watch...
Delete Watch
Set Value...

<xref:AlternetScripter.Debugger.Ul.Threads> (<xref:Alternet.Scripter.Debugger.Ul.Wpf.Threads>)- to display active threads and

switch debugging between them.

Debugger Integration - O *
File Debug
bR I5E

Threads.cs

39 lock (consoleSync)
4@ Console.Writeline(value);

43 3

45 [STAThread]

a6 [public static void Main()

a7 {

48 const int ProducerCount = 4;
49 const int ConsumerCount = 3;

51 for (int 1 = @; 1 < ProducerCount; i++)
0|52 new Thread(ProducerThreadProc) { IsBackground = true }.Start();

54 for (int 1 = @; 1 < ConsumerCount; i++)
[REH new Thread ((WGECIGLIEE M) { IsBackground =

57 Thread.Sleep(Timecut.Infinite); -

Output Breakpoints Call Stack Locals Watches Threads Emors Find Results

Mame D
Threads cs 20532
Copy Ctrl+C
Threads.cs 22128
< >

<xref:Alternet.Scripter.Debugger.Ul.DebuggerControlToolbar >
(<xref:Alternet.Scripter.Debugger.Ul.Wpf.DebuggerControlToolbar>)- a toolbar with buttons executing
Run/Stop/Steplnto/StepOver commands.

Debugger Integration - O

File Debug
P m 1l &,
DebuggerTest cs
e 1
282 Step Into | CustomEvaluatorsTest();
283
24 VariableCaptureTest({"hi")};
285 LambdaEventHandlerTest();
286 I return;
287
288 var 1list = new System.Collections.Generic.list<mystruct>();
289 list.Add(new mystruct(});
21@ list.Add(new mystruct(});
211 list.Add(new mystruct(});
212
213 if ((args != null) && (args.Length > @))
214 foreach (string str in args)
215 Console.Writeline(str);
216
o217 var st = v.Major.ToString();
218 st = MyFunc(v.Major.ToString());
219
228 string mys = "hello";
221
222 char cc = 't';
223 u
224 int[] aaa = new int[] { 1, 2, 3 }; |
225 mystruct ms = new mystruct();

Output Breakpoints Call Stack Locals Watches Threads Emors Find Results
|C} 0 Errors |||] DWamings|

Code Description File

<xref:Alternet.Scripter.Debugger.Ul.DebugMenu> (<xref:Alternet.Scripter.Debugger.Ul.Wpf.DebugMenu>) - menu with menu
items executing Run/Stop/Steplnto/StepOver commands.

Debugger Integration - O

File | Debug

> |?—IT| Compile F6
Debugd P Start Debugging F3
1 Stop Debugging Shift+F3
2 lm Break
3 rea -
4 | B Stepnto F11
5
5 |Bs Step Over F10
7 | é» Evaluate Expression Ctrl+Alt+Q
8 = wTTT T T =% ®;
g
16 public static int M1({int x) =» x;
11
12 public static int M2(int %, string s) => % + s.length;
13
14 public static int i = 12;
15 private static int fi_p = 11;
16
17 public static double fd = 12;
18 protected static double fd_pr = 132;
19 public static fleoat +F = 12;
20 public static Version fv = new Verszion();
21 public static string fs = "hello!™;
22 public static char fc = 'h';
23
24 public static int pfi {get; set; } = 12;
25 private static int pfi_p {get; set; } = 11; [
26 1
27 public static double pfd {get; set; } = 12;

Output Breakpoints Call Stack Locals Watches Threads Emors Find Results

Debugger | General

<xref:Alternet.Scripter.Integration.DebugCodeEdit> (<xref:Alternet.Scripter.Integration.Wpf.DebugCodeEdit>) code-editing
controls designed to work with the Script debugger; these controls allow the user to set or remove breakpoints and evaluate
expressions by hovering the mouse over the symbol during debugging.

Debugger Integration d
File Debug
boE I EHE
DebuggerTest cs
24 VariableCaptureTest({"hi"); "
285 LambdaEventHandlerTest();
286 I return;
287
288 var list = new System.Collections.Generic.list<mystruct>();
289 list.Add(new mystruct(});
21@ list.Add(new mystruct(});
211 list.Add(new mystruct(});
212
213 if ((args != null) && (args.Length > @))
214 foreach (string str in args)
215 Console.Writeline(str);
216
@217 var st = v.[:BlN- ToString();
218 st = MyFuU g int System,Version Major
215 . Gets the value of the major component of the version number for the current System.WVersion object.
22@ string my- ¥
221
222 char cg = 't'; ™
223
224 int[] aaa = new int[] { 1, 2, 3 };
225 mystruct ms = new mystruct(); u
226 mystructl msl = new mystructl(); |
227 ms.1 = 18; -

Debugger | General

Output Breakpoints Call Stack Locals Watches Threads Emors Find Results

Form Designer Overview

AlterNET Form Designer is a .NET component library providing a quick and convenient way to create visual user interfaces. It

allows users to place controls on the design surface, set their initial properties, and write event handlers for their events.

The main components in the package are <xref:Alternet.FormDesigner.WinForms.FormDesignerControl> for WinForms and

<xref:Alternet.FormDesigner.Wpf.FormDesignerControl> for WPF. These controls represent a design surface allowing users to

add controls to a form, arrange them, and write code for their events.

Form Designer supports all common editing operations such as dragging, selecting, and deleting components and controls,

changing their size and z-order, aligning them horizontally or vertically, copy and pasting controls. Like Visual Studio Form
Designer, it serializes its content into C#/VisualBasic or TypeScript/JavaScript source code.

Form Designer includes a set of demos and quick start projects that show how to place controls from the toolbox, load and save

forms being designed, write code in control's event handlers, and run these forms.

| Y AlterNET Software Demo Explorer

= Studio for C#/Visual Basic
= WinForms
AlterMET Studio
Code Editor
Syntax Editor
QuickStart Projects
WPF
= Studio for Python
WinForms
WPF
= Studio for lronPython
WinForms
WPF
= Studie for TypeScript
WinForms
WPF
= Studio for LSP/DAP
WinForms
WPF

AlterNET Studio 9.5

Form Designer Run

Open Project

This projects shows how to build visual interfaces by placing controls to the design surface, arrange them and write code for their events,

More Information:

Form Designer supports all commaon editing operations, such as dragging, selecting and deleting components and controls; allows serialization to C#
or VB code (XAML in WPF edition), and provides execution of the form at run-time.

Copyright © 2016-2023 ALTERNET SOFTWARE PTY LTD f\ Lj_ %_lz

All rights reserved http:/fwww.alternetsoft.com

Below is a brief overview of these projects:

FormDesigner - This project shows how to build visual interfaces by placing controls on the design surface, arranging them, and

writing code for their events.

LoadAndSave - demonstrates how to save/load forms being designed.

DesignAndRun - shows how to write event handlers code and run the form being designed.

CustomizeToolbox - shows how to rearrange toolbox tabs and install third-party assemblies on the toolbox.

Creating your first project

The first thing to do after creating a new WinForms or WPF application is to place the

<xref:Alternet.FormDesigner.WinForms.FormDesignerControl> or <xref:Alternet.FormDesigner.Wpf.FormDesignerControl >
controls on your form. You would also need to place <xref:Alternet.FormDesigner.WinForms.ToolboxControl> or
<xref:Alternet.FormDesigner.Wpf.Toolbox.ToolboxControl> controls and assign their FormDesignerControl property so you can

drag and drop controls and components from it to the design surface.

When you run the application, you will see a new empty form with the design surface, where you can drag controls from the

toolbox, resize, arrange them, etc.

If you'd like to examine and change the properties of the selected controls, you will need to place
<xref:Alternet.FormDesigner.WinForms.PropertyGridControl> or
<xref:Alternet.FormDesigner.Wpf.PropertyGrid.PropertyGridControl> controls, set their FormDesignerControl property, so it

displays a component or control currently selected by the designer.

Similarly, for navigation through the form's controls, you can place <xref:Alternet.FormDesigner.WinForms.OutlineControl> or

<xref:Alternet.FormDesigner.Wpf.Outline.OutlineControl> controls and set their FormDesignerControl property.

WinForms Form Designer

WinForms Form Designer provides a design-time surface where the user can place controls from the toolbox, arrange them,
examine and change their properties and write event handlers for their events.

FormDesignerControl Control

<xref:Alternet.FormDesigner.WinForms.FormDesignerControl> is based on .NET Framework FormDesigner services, which are
implemented in System.ComponentModel.Design namespace and are included in the .NET framework. It allows AlterNET
FormDesigner to look and feel very similar to Visual Studio WinForms Form Designer.

Form Designer - FormT.vb * - | x
From Diesigner can load and save its contert Load... Save
o2 |0 # | 4 Cormota Do .
~ Accessibility A e Form1 = £ @ & Button

AccessbleDes

AccessbleNan CheckBax

AcoessbleRoh Defaul §= CheckedListBox
v Appearance Hello World a ComboBax

dor [: R i T4 DateTimePicker

e ALTE[A e

Backgroundim Tie r =

Cursor Default i B Y A Linklabel
G e CNEY A s

FoeColor [l CortrolText i ListView

FormBorderSty Sizable =

RightTolekt Mo [): Masked Text Box

Right ToLeftLa: False B marthCalendar

Text Form1 ke Hotifylcon

Use\WaitCursm False E w UpDown

Behavi
~ .-.h...m....m Eminn b B FictureBox
The text associated with the: control @ RadioBution

2% RichTextBox v

Below are the essential properties, methods, and events of FormDesignerControl class:
Properties:

<xref:Alternet.FormDesigner.WinForms.FormDesignerControl.DesignerCommands> - provides an interface to Form Designer
commands, such as Copy/Paste, Undo/Redo, Aligning and Arranging controls, etc.

<xref:Alternet.FormDesigner.WinForms.FormDesignerControl.DesignerHost> - Provides an interface for managing designer
transactions and components.

<xref:Alternet.FormDesigner.WinForms.FormDesignerControl.IsModified> - Indicates whether designer content has been
modified since the last save.

<xref:Alternet.FormDesigner.WinForms.FormDesignerControl.SelectedComponents> - contains a list of selected components or
controls.

<xref:Alternet.FormDesigner.WinForms.FormDesignerControl.PrimarySelection> - gets the first selected component or control.
<xref:Alternet.FormDesigner.WinForms.FormDesignerControl.Source> - gets or sets FormDesigner Source.

<xref:Alternet.FormDesigner.WinForms.FormDesignerControl.ToolboxControl> - gets or sets toolbox control associated with the
designer.

<xref:Alternet.FormDesigner.WinForms.FormDesignerControl.ReferencedAssemblies> - gets a collection of assemblies where the
controls and components used on the form being designed are declared.

<xref:Alternet.FormDesigner.WinForms.FormDesignerControl.ImportedNamespaces> - in the case of Visual Basic, it gets a
collection of globally available namespaces.

<xref:Alternet.FormDesigner.WinForms.FormDesignerControl.Options> - allows changing Form Designer appearance by

specifying whether to display snap lines, smart tags, form designer grid, and change grid size.
Events:

<xref:Alternet.FormDesigner.WinForms.FormDesignerControl.DesignerHostChanged> - occurs when the designer host changes,
for example, if a new form is loaded.

<xref:Alternet.FormDesigner.WinForms.FormDesignerControl.NavigateToUserMethodRequested> - occurs when the form
designer is requested to navigate to the event handler. For example, when a user double-clicks on the control.

<xref:Alternet.FormDesigner.WinForms.FormDesignerControl.SelectionChanged> - occurs when a user selects a different control
in the designer.

<xref:Alternet.FormDesigner.WinForms.FormDesignerControl.CommandStateChanged> - occurs when a state of designer
commands changes (for example, when undo stack becomes available)

<xref:Alternet.FormDesigner.WinForms.FormDesignerControl.DesignedContentChanged> - occurs when a user modifies any
aspect of the control being designed.

<xref:Alternet.FormDesigner.WinForms.FormDesignerControl.LoadingErrorOccured> - occurs when the design code contains any
syntax error during loading.

<xref:Alternet.FormDesigner.WinForms.FormDesignerControl.CompilerErrorClick> - occurs when a user clicks on a compiler
error on the Form Designer surface.

<xref:Alternet. FormDesigner.WinForms.FormDesignerControl.DesignSurfaceKeyDown> - when a user presses a key when the
design surface is focused.

Methods:

<xref:Alternet.FormDesigner.WinForms.FormDesignerControl.Reload> - reloads form to be designed from the source.

<xref:Alternet.FormDesigner.WinForms.FormDesignerControl.Save> - serializes designer to C# / Visual Basic file, Python, or
TypeScript / JavaScript code.

Form Designer works with three source files simultaneously: one containing design-time code and another containing user-
written event handlers and resource files for saving/loading the form's resources (such as images). Most often, users will need to
edit at least a file containing event handlers, which will require setting up
<xref:Alternet.FormDesigner.WinForms.FormDesignerControl> control's source to the one supporting integration with the editor.
Refer to <xref:Alternet.FormDesigner.Integration.FormDesignerTextSource> class for the implementation of the source, which
integrates with <xref:Alternet.Editor.SyntaxEdit> control included in our demo projects.

Error Handling

WinForms FormDesigner loads and saves its content into C#/VisualBasic, Python, or TypeScript/JavaScript code; this code needs
to be correct both from a syntax and semantic point of view. If the FormDesigner loader encounters an error in the code, it
switches to error mode. It displays a list of found errors, allowing a user to click and navigate to the error source by handling
<xref:Alternet.FormDesigner.WinForms.FormDesignerControl.CompilerErrorClick> event.

Note: specific language assembly handling code serialization needs to be included in the project to save/load Form designer
content into the code.

C#/VisualBasic language services are implemented in Alternet.FormDesigner.Roslyn.v9 assembly;
Python language services are implemented in Alternet.FormDesigner.Python.v9 assembly.

TypeScript/JavaScript language services are implemented in Alternet.FormDesigner.TypeScript.v9 assembly.

Code: Form1.cs Code: Form1.Designer.cs Design: Form1
© Designer Loading Error

The following loading errors have occured:

Form1.Designer.cs(30,13): ‘Form1' does not contain a definition for ‘button12’ and no extensicon

ToolboxControl

The <xref:Alternet.FormDesigner.WinForms.ToolboxControl> control displays components and controls you can place onto the
design surface. It provides a set of foldable tabs helping to organize controls by categories and allowing to specify which
components and controls, including third-party controls, appear on the toolbox, on which tabs, and sort order.

[Common Controls ~

4 Containers

FlowLayout Panel

[x_\"l GroupBaox

Panel

SplitContainer
TabControl

&= TableLayoutPane!

Y00 E

[

Menus & Toolbars

Y5 ContextMenuStip
E1 MenuStrip

b StatusStip

BB ToolStrip

[ToolStripCorntainer

4 Data

ﬁu BindingMavigataor

ToolBox control can be linked to <xref:Alternet.FormDesigner.WinForms.FormDesignerControl> by setting
<xref:Alternet.FormDesigner.WinForms.ToolboxControl.FormDesignerControl> property which allows dragging components and
controls to the Form Designer.

Below are essential properties and methods to manipulate Toolbox control:
Properties

<xref:Alternet.FormDesigner.WinForms.ToolboxControl.CategoryNames> - gets a collection of Categories (Tabs) displayed by the
toolbox.

<xref:Alternet.FormDesigner.WinForms.ToolboxControl.SelectedTool> - returns currently selected toolbox item.
Methods

<xref:Alternet.FormDesigner.WinForms.ToolboxControl. AddCategory*> - adds a new category to the toolbox.
<xref:Alternet.FormDesigner.WinForms.ToolboxControl. Addltem*> - places a toolbox item onto the specified toolbox tab.
<xref:Alternet.FormDesigner.WinForms.ToolboxControl.ClearltemsinCategory*> - clears items in the specified tab.
<xref:Alternet.FormDesigner.WinForms.ToolboxControl.GetAllTools> - gets all toolbox items.
<xref:Alternet.FormDesigner.WinForms.ToolboxControl.GetToolsFromCategory*> - gets toolbox items on the specific tab.

<xref:Alternet.FormDesigner.WinForms.ToolboxControl.SelectPointer> - deselects currently selected toolbox item and selects
pointer tool.

<xref:Alternet.FormDesigner.WinForms.ToolboxControl.RemoveCategory*> - removes a specific tab.
<xref:Alternet.FormDesigner.WinForms.ToolboxControl.Removeltem*> - removes a toolbox item from the category.
<xref:Alternet.FormDesigner.WinForms.ToolboxControl.SetSelectedltem*> - selects toolbox item.
<xref:Alternet.FormDesigner.WinForms.ToolboxControl. AdditemForType*> - adds toolbox item from the type name.

<xref:Alternet.FormDesigner.WinForms.ToolboxControl. AddltemsFromAssembly*> - add all types that can appear on the toolbox

from the assembly.
<xref:Alternet.FormDesigner.WinForms.ToolboxControl.ScrollToCategory* > - scrolls toolbox control to the specified category.
<xref:Alternet.FormDesigner.WinForms.ToolboxControl.ScrollToltem*> - scrolls toolbox control to the specified item.

<xref:Alternet.FormDesigner.WinForms.ToolboxControl.BeginUpdate> - prevents repainting of the toolbox until EndUpdate is
called.

<xref:Alternet.FormDesigner.WinForms.ToolboxControl.EndUpdate> - re-enables toolbox repainting.
<xref:Alternet.FormDesigner.WinForms.ToolboxControl.Save* > - saves the toolbox content to the specified stream.

<xref:Alternet.FormDesigner.WinForms.ToolboxControl.Load*> - loads the toolbox content from the specified stream.

PropertyGridControl

The <xref:Alternet.FormDesigner.WinForms.PropertyGridControl> control allows the user to view and change the design-time
properties and events of the selected controls or components.

AR

AccessibleDes -
AccessibleMan
AccessibleRole Default

v Appearance
BackColor [| Cortral
BorderStyle Mone

Cursor Default
Flat Style Standard
Font Microgoft Sans Ser

FareColor Il Control Text
Image [inone)
ImageAlign MiddleCenter
Imagelndex [_] {none)
ImageKey [inone)

ImageList (nane)
Right ToLeft Mo
Hello World ||
T mact Alimem Taml =F
Text

The text associated with the control.

PropertyGrid control can be linked to <xref:Alternet.FormDesigner.WinForms.FormDesignerControl> by setting
<xref:Alternet.FormDesigner.WinForms.PropertyGridControl.FormDesignerControl> property allows viewing and changing
properties and events for the controls selected in the Form Designer.

OutlineControl

<xref:Alternet.FormDesigner.WinForms.OutlineControl> displays the form's layout as a tree view, providing an easy way to
navigate, show/hide and re-arrange controls on the form.

4 MyForm Form

4 [panell Panel

P4 pictureBox1 PictureBox
A label1 Label
CloseButton Button

OutlineControlcontrol can be linked to <xref:Alternet.FormDesigner. WinForms.FormDesignerControl> by setting
<xref:Alternet.FormDesigner.WinForms.OutlineControl.FormDesignerControl> property which allows navigating through the

controls displayed by the Form Designer.

WPF Form Designer

WPF Form Designer provides a design-time surface where the user can place controls from the toolbox, arrange them, examine
and change their properties and write event handlers for their events.

FormDesignerControl Control

<xref:Alternet.FormDesigner.Wpf.FormDesignerControl> is based on SharpDevelop open-source FormDesigner package:
https://github.com/icsharpcode/WpfDesigner

Form Designer — [m| x
File Edit Fermat Options Run Tools
4 HelloWorld. Wpf.MainWindowC5 MainWindowCSxaml.cs | MainWindowCSxaml | MainWindowCS.xaml
MainWindowCSxaml [Emz i
MainWindowCSxaml.cs Type
4 MainWindowVEB
MainWindowVBxaml P
MainWindowVB xaml.vb
Button
Text maodified by LabelDesignlteminitializer
ALTER
*NET™
8 q @ 3,@ Properties | Teolbox | Outline

Below are the essential properties, methods, and events of FormDesignerControl class:
Properties:

<xref:Alternet.FormDesigner.Wpf.FormDesignerControl.DesignerCommands> - provides an interface to Form Designer
commands, such as Copy/Paste, Undo/Redo, Aligning and Arranging controls, etc.

<xref:Alternet.FormDesigner.Wpf.FormDesignerControl.IsModified> - Indicates whether designer content has been modified
since the last save.

<xref:Alternet.FormDesigner.Wpf.FormDesignerControl.Selectedltems> - contains a list of selected controls.
<xref:Alternet.FormDesigner.Wpf.FormDesignerControl.Source> - gets or sets FormDesigner Source.

<xref:Alternet.FormDesigner.Wpf.FormDesignerControl.ReferencedAssemblies> - gets a collection of assemblies where the
controls used on the form being designed are declared.

<xref:Alternet.FormDesigner.Wpf.FormDesignerControl.CurrentTool> - gets or sets the currently selected tool in the Form
Designer.

Events:

<xref:Alternet.FormDesigner.Wpf.FormDesignerControl.NavigateToUserMethodRequested> - occurs when the form designer is
requested to navigate to the event handler. For example, when a user double-clicks on the control.

https://github.com/icsharpcode/WpfDesigner

<xref:Alternet.FormDesigner.Wpf.FormDesignerControl.SelectionChanged> - occurs when a user selects a different control in the

designer.

<xref:Alternet.FormDesigner.Wpf.FormDesignerControl.DesignedContentChanged> - occurs when a user modifies any aspect of
the control being designed.

Methods:

<xref:Alternet.FormDesigner.Wpf.FormDesignerControl.Reload> - reloads form to be designed from the source.
<xref:Alternet.FormDesigner.Wpf.FormDesignerControl.Save> - serializes designer content to the XAML code.

Form Designer works with two different source files simultaneously: XAML containing design-time code and C# or Visual Basic
source containing user-written event handlers. Most often, users will need to edit a file containing event handlers, which will
require setting up <xref:Alternet.FormDesigner.WinForms.FormDesignerControl> control's source to the one supporting
integration with the editor. Refer to <xref:Alternet.FormDesigner.Integration.Wpf.FormDesignerTextSource> class for the
implementation of the source, which integrates with <xref:Alternet.Editor.Wpf.TextEditor> control included in our demo projects.

Error Handling

WinForms FormDesigner loads and saves its content into C#/VisualBasic, Python, or TypeScript/JavaScript code; this code needs
to be correct both from a syntax and semantic point of view. If the FormDesigner loader encounters an error in the code, it
switches to error mode. It displays a list of found errors, allowing a user to click and navigate to the error source by handling
<xref:Alternet.FormDesigner.WinForms.FormDesignerControl.CompilerErrorClick> event.

ToolboxControl

The <xref:Alternet.FormDesigner.Wpf.Toolbox.ToolboxControl> control displays components and controls you can place onto the
design surface. It provides a set of foldable tabs helping to organize controls by categories and allowing to specify which
components and controls, including third-party controls, appear on the toolbox, on which tabs, and sort order.

I> Common Controls ~

4 Cortainers

[*'] GroupBox

Panel

= SplitContainer
== TabControl
TableLayoutPanel

4 Menus & Toolbars

E Contesxt MenuStrip
=1 MenuStrip

b StatusStip

IB8 ToolStrip

[ToolStripContainer

4 Data

w" BindingMavigator

ToolBox control can be linked to <xref:Alternet.FormDesigner.Wpf.FormDesignerControl> by setting
<xref:Alternet.FormDesigner.Wpf.Toolbox.ToolboxControl.FormDesigner> property which allows dragging components and
controls to the Form Designer.

Below are essential properties and methods to manipulate Toolbox control:

Properties

<xref:Alternet.FormDesigner.Wpf.Toolbox.ToolboxControl.CategoryNames> - gets a collection of Categories (Tabs) displayed by
the toolbox.

<xref:Alternet.FormDesigner.Wpf.Toolbox.ToolboxControl.SelectedToolboxltem > - returns the currently selected toolbox item.
Methods

<xref:Alternet.FormDesigner.Wpf.Toolbox.ToolboxControl.AddCategory*> - adds a new category to the toolbox.
<xref:Alternet.FormDesigner.Wpf.Toolbox.ToolboxControl. AddIitem*> - places a toolbox item onto the specified toolbox tab.
<xref:Alternet.FormDesigner.Wpf.Toolbox.ToolboxControl.ClearltemsinCategory*> - clears items in the specified tab.
<xref:Alternet.FormDesigner.Wpf.Toolbox.ToolboxControl.GetAllTools> - gets all toolbox items.
<xref:Alternet.FormDesigner.Wpf.Toolbox.ToolboxControl.GetToolsFromCategory*> - gets toolbox items on the specific tab.

<xref:Alternet.FormDesigner.Wpf.Toolbox.ToolboxControl.SelectPointer> - deselects currently selected toolbox item and selects
pointer tool.

<xref:Alternet.FormDesigner.Wpf.Toolbox.ToolboxControl. RemoveCategory*> - removes a specific tab.
<xref:Alternet.FormDesigner.Wpf.Toolbox.ToolboxControl. Removeltem*> - removes a toolbox item from the category.
<xref:Alternet.FormDesigner.Wpf.Toolbox.ToolboxControl.SetSelectedltem*> - selects toolbox item.
<xref:Alternet.FormDesigner.Wpf.Toolbox.ToolboxControl. AddltemForType*> - adds toolbox item from the type name.

<xref:Alternet.FormDesigner.Wpf.Toolbox.ToolboxControl. AddltemsFromAssembly*> - add all types that can appear on the
toolbox from the assembly.

<xref:Alternet.FormDesigner.Wpf.Toolbox.ToolboxControl.BeginUpdate> - prevents repainting of the toolbox until EndUpdate is
called.

<xref:Alternet.FormDesigner.Wpf.Toolbox.ToolboxControl. EndUpdate> - re-enables toolbox repainting.
<xref:Alternet.FormDesigner.Wpf.Toolbox.ToolboxControl.Save*> - saves the toolbox content to the specified stream.

<xref:Alternet.FormDesigner.Wpf.Toolbox.ToolboxControl.Load*> - loads the toolbox content from the specified stream.

PropertyGridControl

The <xref:Alternet.FormDesigner.Wpf.PropertyGrid.PropertyGridControl> control allows the user to view and change the design-

time properties and events of the selected controls or components.

5 HIEIES

AccessibleDes A
AccessibleNan
AccessibleRole Default

~ Appearance
BackColor [] Cortrol
BorderStyle Mone

Cursor Default
Flat Style Standard
Fort Microsoft Sans Ser

FareColor Il Control Text
Image [inone)
ImageAlign MiddleCenter
Imagelndex [_] {none)
ImageKey [inone)

ImageList (nane)
Right ToLeft Mo
Hello World ||
T mact Alimem Taml =F
Text

The text associated with the control.

PropertyGrid control can be linked to <xref:Alternet.FormDesigner.Wpf.FormDesignerControl> by setting
<xref:Alternet.FormDesigner.WinForms.PropertyGridControl.FormDesignerControl> property allows viewing and changing
properties and events for the controls selected in the Form Designer.

OutlineControl

<xref:Alternet.FormDesigner.WinForms.OutlineControl> displays the form's layout as a tree view, providing an easy way to
navigate, show/hide and re-arrange controls on the form.

4 MyForm Form

4 [panel1 Panel

P pictureBox1 PictureBox
A labell Label
CloseButton Button

OutlineControlcontrol can be linked to <xref:Alternet.FormDesigner.Wpf.FormDesignerControl> by setting
<xref:Alternet.FormDesigner.Wpf.Outline.OutlineControl.FormDesigner> property which allows navigating through the controls
displayed by the Form Designer.

	Table of Contents
	Introduction
	Getting Started
	Code Editor
	Overview
	Win Forms
	Basic Features
	Extended Features

	WPF
	Basic Features
	Extended Features

	Syntax Parsing
	Advanced Topics

	Scripter
	Overview
	C#/Visual Basic
	Python/IronPython
	TypeScript/JavaScript
	Script Debugging
	Debugger UI

	Form Designer
	Overview
	Win Forms
	WPF

