
Table of Contents
Introduction

Getting Started 2
Code Editor

Overview 8
Win Forms

Basic Features 12
Extended Features 29

WPF
Basic Features 36
Extended Features 52

Syntax Parsing 59
Advanced Topics 64

Scripter
Overview 69
C#/Visual Basic 72
Python/IronPython 75
TypeScript/JavaScript 77
Script Debugging 79
Debugger UI 83

Form Designer
Overview 93
Win Forms 95
WPF 101

2 / 105

Getting Started
AlterNET Studio allows you to extend WinForms and WPF .NET applications with code editing, scripting,
and user interface designing capabilities.

Installation
AlterNET Studio requires .NET Framework 4.71+ and Visual Studio 2022 to be installed on the target
machine.

By default, the AlterNET Studio installation program installs AlterNET Studio binary files to Program
Files\AlterNET Software\AlterNET Studio\Bin\ folder and example projects with source code in
\Users\Public\Documents\AlterNET Software\AlterNET Studio folder. These settings can be changed if
you select Customize in the installation wizard.

Advanced installation options include platform selection (WinForms, WPF, or both) and the
Python/IronPython, TypeScript/JavaScript, and LangServer/DAP features.

3 / 105

The installation program registers Visual Studio extensions and places controls and components on the
AlterNET Code Editor, AlterNET Scripter, and AlterNET Form Designer tabs in the Visual Studio toolbox.

Code Editor Scripter Form Designer

4 / 105

Other versions of .NET Framework, .NET 6.0, .NET 7.0 and .NET 8.0 are supported via NuGet packages. A
complete list of NuGet packages can be found here:

https://alternetsoft.com/download#nuget

If you have a previous major version of AlterNET Studio and decide to install the new one side-by-side,
you will have two sets of Visual Studio Extensions and two sets of tabs, each one clearly displaying the
version number.

Demo and QuickStart projects
Once the product is installed, you can explore demos and quick-start projects by compiling
Alternet.Studio.AllDemos solutions or accessing these demos through the Demo Explorer tool, which is
added to the Windows Start menu.

https://alternetsoft.com/download#nuget
https://alternetsoft.com/download#nuget
https://alternetsoft.com/download#nuget

5 / 105

Core Components
AlterNET Studio includes the following core components:

Code Editor
AlterNET Code Editor is a component library that brings efficient code editing functionality to .NET
applications. It provides code editing capabilities such as syntax highlighting, IntelliSense (code
completion), code outlining, visual indicators for bookmarks, line styles, syntax errors, and more.

AlterNET Code Editor matches most of the features of Visual Studio code editor and is primarily
designed for C#, Visual Basic, TypeScript, JavaScript, Python, and XML text editing.

Scripter
AlterNET Scripter is a component library designed to integrate C#/Visual Basic, TypeScript/JavaScript,
and IronPython scripts into the .NET applications. It allows extending functionality of the application
logic without recompiling and redeploying the application.

AlterNET Scripter provides a framework to compile and execute user-defined scripts along with a set of
debugging tools enabling application developers to make application objects available to the scripts so

6 / 105

they can write user-defined scenarios for these applications.

Form Designer
AlterNET Form Designer is a component library providing a quick and convenient way to create graphical
user interfaces. It allows for placing controls on the design surfaces, setting their initial properties, and
writing event handlers for their events.

AlterNET Form Designer includes WinForms and WPF designers, both supporting designing visual
interfaces, serializing design content, and running the forms being designed.

Integrating AlterNET Studio components.
AlterNET Code Editor, Scripter, and Form Designer can work together in applications that require text
editing, scripting, or UI designing functionality. Code Editor is desinged for C#, Visual Basic, TypeScript,
JavaScript, Python and XML code editing and can be used in conjunction with Form Designer and
Scripter packages to provide code editing functionality for code-behind files, writing event handlers and
script editing.

Refer to our AlterNET Studio demo project to see how Code Editor, Scripter, and Form Designer work
together.

Licensing
AlterNET Studio requires a valid license to be installed for developing .NET applications that use its
components. Evaluation-license is supplied upon AlterNET Studio installation and when consuming
NuGet packages; these licenses are based on LICX files technology provided by Microsoft and are valid
for 30 days since first use.

Upon ordering a paid version of our product, a customer is sent a License key and will be able to activate
it on the target computer. This key will support several activations but is not transferable between
development machines.

In specific scenarios, such as using our software inside a protected environment, multiple build servers,
or Azure Pipeline, we can provide a node-unlocked license, which can be copied to the specific folder on
a development PC or a build server (ProgramData\AlternetSoft\Licenses by default). The location of the
folder we scan for licenses can be changed by setting the following environment variable on your
Windows system: ALTERNET_STUDIO_LICENSE_DIRECTORY. It is particularly useful in the case of Azure
Pipeline, where access to the above folder is restricted.

Once you drag AlterNET Studio controls or components from the toolbox, such as SyntaxEdit, TextEditor,
FormDesignerControl, or ScriptRun on your form, the LICX file will be added to your project under the
Properties folder with the content like this:

7 / 105

Alternet.Editor.SyntaxEdit, Alternet.Editor.v9, Version=9.0.0.0, Culture=neutral,
PublicKeyToken=8032721e70924a63

Alternet.Scripter.ScriptRun, Alternet.Scripter.v9, Version=9.0.0.0, Culture=neutral,
PublicKeyToken=8032721e70924a63

Alternet.FormDesigner.WinForms, Alternet.FormDesigner.v9, Version=9.0.0.0, Culture=neutral,
PublicKeyToken=8032721e70924a63

In case these components are created from the code, a LICX file with the above content should be added
to your project. It also can be copied from our demo projects if needed.

The design-time license is checked when you work with this component at design time or when the
project is compiled, and the evaluation screen reminding you about the evaluation mode and the
number of days left for your evaluation will appear once in a while. If the project compiled with an
evaluation version of licensed components is run outside the Microsoft Visual Studio debugger, a screen
suggesting that the application was created with an evaluation version of AlterNET Studio will be
displayed. Once a paid license is activated using the LicenseActivation tool, this nag screen will no longer
appear.

When the evaluation period expires, you will still be able to compile and run your application from within
Visual Studio. However, applications created with an expired license will not be run in standalone mode.

Below is more information about the Microsoft license compiler and some discussions related to the
intent and purpose of LICX files, using them with source code control systems, etc.

https://msdn.microsoft.com/en-us/library/ha0k3c9f(v=vs.110).aspx

http://stackoverflow.com/questions/5628969/how-licenses-licx-file-is-used

http://stackoverflow.com/questions/51363/how-does-the-licenses-licx-based-net-component-licensing-
model-work

https://msdn.microsoft.com/en-us/library/ha0k3c9f(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/ha0k3c9f(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/ha0k3c9f(v=vs.110).aspx
http://stackoverflow.com/questions/5628969/how-licenses-licx-file-is-used
http://stackoverflow.com/questions/5628969/how-licenses-licx-file-is-used
http://stackoverflow.com/questions/5628969/how-licenses-licx-file-is-used
http://stackoverflow.com/questions/51363/how-does-the-licenses-licx-based-net-component-licensing-model-work
http://stackoverflow.com/questions/51363/how-does-the-licenses-licx-based-net-component-licensing-model-work
http://stackoverflow.com/questions/51363/how-does-the-licenses-licx-based-net-component-licensing-model-work
http://stackoverflow.com/questions/51363/how-does-the-licenses-licx-based-net-component-licensing-model-work

8 / 105

Code Editor Overview
AlterNET Code Editor is a .NET component library that brings efficient code editing functionality into
your WinForms and WPF .NET applications. It provides code editing capabilities such as syntax
highlighting, code completion and outlining, visual indicators for bookmarks, line styles, syntax errors,
and more.

The main components in the package are SyntaxEdit for WinForms and TextEditor for WPF. These
controls provide text editing functionality and support almost all the features that can be found in the
Visual Studio.NET code Editor, including customizable syntax highlighting, code outlining, code
completion, unlimited undo/redo, bookmarks, word wrap, drag-n-drop, built-in search/replace dialogs,
multiple views of the same text, displaying gutter, margin, line numbers and many more.

Code Editor includes a set of quick-start projects, each designed to highlight the component's specific
features.

Below is a brief overview of these projects:

Scroll Bar Annotations - Shows how text edit control can display markers about current line, syntax errors,
bookmarks, modified lines and search results on the vertical scrollbar area.

9 / 105

Syntax Highlighting - Shows how text edit control can highlight syntax when working with different
programming languages.

Code Completion - Shows how to display code completion while you type, either by getting code
completion information from the parser or programmatically.

Code Outlining - Shows how to use outlining; either provided by parser, or programmatically.

Selection - Shows how to use different options to control text selection appearance and behavior in the
text editor.

Undo/Redo - Shows how to use various options to control undo/redo behavior.

Search and Replace - Shows how to use built-in Search and Replace dialogs and implement search across
multiple documents.

Gutter - Shows how to control the appearance of the gutter area and display various indicators on it.

Bookmarks - Shows how to set and navigate through numbered and though-loop bookmarks and how
to set bookmarks navigation across multiple documents.

Word Warp - Shows how to configure text edit control to wrap words at the right edge of the visible area
or a given position.

Line Styles - Shows how to display line indicators on the text editor control area and associated images
on the gutter.

Print and Preview - Shows how to print and preview text editor control content and set different printing
options.

Code Snippets - Shows how to display and use predefined code templates to speed up entering
frequently used fragments of code.

Multiple Views and Split View - Shows how to configure text editor windows to display and edit the same
text content.

Margin - Shows how to use various options controlling the appearance and behavior of the Margin line
and UserMargin area next to the gutter.

HyperText - Shows how to highlight hyperlinks in the text.

Page Layout - Shows how to configure text edit control to display its content as if it is positioned on the
printed page.

Miscellaneous - Shows how to display white-space symbols and background images, as well as highlight
matching brackets.

10 / 105

Customize - Shows an example of an options dialog that allows changing display settings of the text edit
control.

Roslyn-Based Parsing - Shows how to link text edit control to Microsoft Roslyn-based parsers that
perform full syntax and semantic analysis of the C# or Visual Basic code and provide features like code
completion, code outlining and syntax/semantic error highlighting.

TypeScript Parsing - Shows how to link text edit control to Microsoft TypeScript-based parsers that
perform full syntax and semantic analysis of the TypeScript or JavaScript code and provide features like
code completion, code outlining, and syntax/semantic error highlighting.

Advanced Syntax Parsing - Shows how to link text edit control to parsers that perform syntax analysis for
a set of programming languages and provide features like code completion, code outlining, and syntax
error highlighting.

Snippet Parsers - Shows how to implement C# or Visual Basic syntax and semantic analysis for sub-set of
the code, like class or method body.

SQL DOM Parser - Shows how to implement syntax analysis for Microsoft SQL.

XAML Parser - Shows how to implement syntax analysis for XAML.

Lsp-based parsers (C/C++, Java, Python, Lua, XML, and PowerShell) - Shows how to implement syntax
analysis for these languages using native servers.

Lsp Multiple Files - Shows how to combine multiple LSP documents into a single workspace.

Python Parsing - Shows how to implement syntax analysis for Python and IronPython.

Creating your first project
The first thing to do after creating a new WinForms or WPF application is to place the SyntaxEdit or Text
Editor controls. These controls are the central components in the package, and in many cases, they are
the only ones that need to be placed on the form. These controls look similar to the standard multi-line
text box, except for having a gray band on the left of its client area, used to display line numbers,
bookmarks, and other visual indicators.

The following example demonstrates how to load text into the editor and save it. Use the LoadFile
method to load text from the file. The first parameter specifies the name of the file to be loaded into the
control. The optional second parameter specifies encoding.

Saving of the text is performed similarly:

 edit.LoadFile(openFileDialog1.FileName);

11 / 105

It is possible to load text from streams instead of files, by substituting the previous two functions by
LoadStream and SaveStream.

Working with text
The Code Editor package includes non-visual components: TextSource (or TextSource for WPF
applications). For WindowsForms applications TextSource is accessible through the Microsoft Visual
Studio toolbox. The SyntaxEdit and TextEditor controls do not store the text being edited. This task is
offloaded to the TextSource components, which provide methods to manipulate the text content. Text
edit controls can have TextSource explicitly assigned and use an internally created one in case it's not set.
It gives a clear separation between visualization and data layers. Also, it makes it possible to implement
features like multiple views of the same text by assigning a single TextSource to several text editors.
Visually, these editors can be placed in a single window separated by a splitter control or multiple
windows. Most TextSource components' methods are also available via the edit controls.

 edit.SaveFile(saveFileDialog1.FileName);

12 / 105

Code Editor Basic Features (WinForms)
Code Editor matches most of the Visual Studio code editor features, such as Selection, Code Completion,
Code Outlining, Search/Replace, Navigation and Undo, and many more.

Editing features
Code Editor provides an extended set of methods and properties for text modifications and navigating
within the text content. Most of these methods are called implicitly when the user edits the text in the
edit control or presses the arrows and PageUp, PageDown, End, or Home keys. The most commonly used
methods and properties are listed below:

Position - gets or sets the current position (Column, Row) within the text.

NewLine - inserts new line at the current position and number of spaces or tabs according to the
indentation options.

Insert - inserts string at the current position.

DeleteRight - deletes a number of characters to the right of the current position.

DeleteLeft - deletes a number of characters to the right of the current position.

BreakLine - inserts a line break at the given position.

UnBreakLine - joins two lines at the end of a current line.

MoveCharLeft - moves the current position to one character left.

MoveCharRight - moves the current position to one character right.

MoveLineDown - moves the current position to one line below.

MoveLineUp - moves the current position to one line above.

.* MoveFileBegin - moves the current position to the beginning of the text.

.* MoveFileEnd - moves the current position to the end of the text.

All such modifications are translated to the underlying TextSource component, which also maintains the
list of all edits so a user can undo them.

Selection
Just like almost any text editor, the SyntaxEdit supports a concept of text selection and a wide range of
operations on it. All the selection-related aspects are controlled via the Selection property. Selections can

13 / 105

be of two types: traditional stream-type selection and block-type selection. The latter can be created by
navigating the text with the navigation keys and holding Shift and Alt keys together.

BackColor and ForeColor define the background and the foreground colors used to mark the currently
selected text. Selection.InActiveBackColor and Selection.InActiveForeColor are used when the editor is
out of focus.

The Options controls different aspects of the behavior of selections.

DisableSelection completely disables selection support in the editor.

DisableDragging disables drag-n-drop operations on the selection.

SelectBeyondEol allows selection in the virtual space (if the NavigateOptions.BeyondEol is enabled)

UseColors instructs the editor to use the same foreground colors for selected text as the ones used
for unselected text (i.e., any syntax highlighting will be visible). Note for this to be useful; the section
background color must be in contrast with all possible foreground colors.

HideSelection causes the selection to become invisible when the editor loses focus.

SelectLineOnDblClick allows the user to select the entire line by double-clicking on it.

DeselectOnCopy causes the selection to be removed after the user performs copy selection to
clipboard operation.

PersistentBlocks causes the selection to be retained after the user has finished making it and has
started other navigation.

OverwriteBlocks causes the new input to overwrite the currently selected text.

SmartFormat allows formatting blocks when pasting according to the rules defined by the syntax
parser.

WordSelect causes whole words to be selected rather than individual characters when using mouse
selection.

DrawBorder causes Edit control to draw border around selection

SelectLineOnTripleClick allows selecting the whole line rather than a single word by triple clicking
the mouse

DeselectOnDblClick causes selection to be cleared by mouse dblclick.

ConvertToSpacesOnPaste specifies that selection should convert all tabs to spaces in the text being
pasted when the Lines.UseSpaces is on.

14 / 105

RtfClipboard causes the selection to copy its content in text and RTF formats.

ClearOnDrag causes selected text to be cleared after dragging from an external source

CopyLineWhenEmpty allows copying whole line when selection is empty

DisableCodeSnippetOnTab - disables code snippets insertion when pressing Tab key.

SelectWordOnCtrlClick causes the word under the cursor to be selected when a user holds the Ctrl
key

ExtendedBlockMode causes text being typed to be inserted into all selected lines within the
rectangular block.

It is possible to programmatically select text by setting SelectionStart and SelectionLength properties, or
with the help of SetSelection method.

The selected text can be retrieved or set via the SelectedText property.

A developer can perform various operations on the current selection. Some of them are:

IsEmpty checks whether there is any text selected.

SetSelection selects the specified rectangular area.

SelectAll() selects the whole document.

Cut()/Copy()/Paste() performs standard operations like copying text to the clipboard, cutting text to
the clipboard and pasting text from the clipboard.

IsPosInSelection checks if the specified position lies within selection.

Clear() clears selection (this does not affect the text itself).

Move moves or copies the currently selected text to a new location.

SmartFormat() formats the selected text according to the rules defined by the syntax parser.

LowerCase()/UpperCase()/Capitalize() change the case of the currently selected text.

UnIndent()/UnIndent() change the indent of the currently selected text.

In fact, if some action can be performed by the user, it can also be performed programmatically:

 if(!edit.Selection.IsEmpty)
 edit.Selection.SelectedText =

15 / 105

This code encloses the currently selected text in brackets.

Searching and Replacing
Among the operations that can be performed on the text, there are operations of searching and
replacing text strings. Unlike the standard multi-line text editor, which does not implement such
functionality, the SyntaxEdit control comes with built-in support for them. It's ready to use out-of-the-
box: when the user presses the Ctrl+F key combination, the search dialog box appears:

The text-replace dialog can be activated by pressing Ctrl+H. Besides using the UI to control the process,
all the operations can be executed programmatically by calling the corresponding methods of the Syntax
Edit.

For example, to find some string, you could use the following code:

Or, with regular expressions:

To activate the Search Dialog:

Moreover, the Search and Replace dialog box functionality is not hardwired: you can replace the dialog
box with your own by implementing the ISearchDialog interface, and assigning it to the editor by setting
its SearchDialog property. The built-in dialog can serve as a good example and a starting point.

 "(" + edit.Selection.SelectedText + ")";

 edit.Find("some string");

 edit.Find(" ", SearchOptions.RegularExpressions, new
 System.Text.RegularExpressions.Regex("a.?z"));

 edit.DisplaySearchDialog();

16 / 105

If you need to perform the Search and Replace operation without any user interaction, you can use the
ReplaceAll method.

I.e.:

After this, every occurrence of a "bad" word in the entire text will be replaced by a "good" word.

Note that this would move the cursor position to the place where the last replacement has been made,
so if you need it to be unnoticeable for the user, you need to enclose this call in the code which saves
and restores the current cursor position:

Search/Replace function can work across multiple documents. To allow the search to find text in multiple
editors, you will need to set SearchManager.Shared to true and provide a list of editors to perform a
search in its InitSearch event handlers and return/navigate to the appropriate editor in GetSearch event
handler:

 edit.ReplaceAll("bad", "good", SearchOptions.WholeWordsOnly |
 SearchOptions.EntireScope, out count);

 System.Drawing.Point pos;
 pos = edit.Position;
 edit.ReplaceAll("bad", "good", SearchOptions.WholeWordsOnly |
 SearchOptions.EntireScope, out count);
 edit.Position = pos;

 SearchManager.SharedSearch.Shared = true;
 SearchManager.SharedSearch.InitSearch +=
 new InitSearchEvent(DoInitSearch);
 SearchManager.SharedSearch.GetSearch +=
 new GetSearchEvent(DoGetSearch);

 private void DoInitSearch(object sender, InitSearchEventArgs e)
 {
 e.Search = GetActiveSyntaxEdit() as ISearch;
 foreach (var edit in editors.Values)
 {
 edit.SearchGlobal = true;
 e.SearchList.Add(edit.Source.FileName);
 }
 }

 private void DoGetSearch(object sender, GetSearchEventArgs e)
 {

17 / 105

Scroll Bars and Split View
The appearance and behavior of scrollbars are controlled by the Scrolling property.

The ScrollBars property determines which scrollbars and under what conditions appear on the Syntax
Edit. It can take one of the following values:

<xref:System.Windows.Forms.RichTextBoxScrollBars.None> - neither horizontal, nor vertical scrollbar
ever appear

<xref:System.Windows.Forms.RichTextBoxScrollBars.Horizontal> - horizontal scrollbar appears if
necessary; vertical one never appears

<xref:System.Windows.Forms.RichTextBoxScrollBars.Vertical> - vertical scrollbar appears if necessary;
horizontal one never appears

<xref:System.Windows.Forms.RichTextBoxScrollBars.Both> - both horizontal and vertical scrollbars
appear if necessary

<xref:System.Windows.Forms.RichTextBoxScrollBars.ForcedHorizontal> - horizontal scrollbar is
always visible; vertical one never appears

<xref:System.Windows.Forms.RichTextBoxScrollBars.ForcedVertical> - vertical scrollbar is always
visible; horizontal one never appears

<xref:System.Windows.Forms.RichTextBoxScrollBars.ForcedBoth> - both horizontal and vertical
scrollbars are always visible

The behavior of the scrollbars is controlled by ScrollingOptions.

You can also use Scrolling.Options to allow SyntaxEdit to split its content. Note that SyntaxEdit's Dock
must be set to DockStyle.Fill. Otherwise, this feature will not work. Splitters are displayed in the left-
bottom corner for vertical splitting and the right-top corner for horizontal splitting.

 foreach (var edit in editors.Values)
 {
 if (edit.Source.FileName == e.FileName)
 {
 e.Search = edit as ISearch;
 break;
 }
 }
 }

18 / 105

SmoothScroll - if set, the editor's content is updated as the user drags the scrollbar. Otherwise, the
content is updated after the user releases the scrollbar thumb. Disabling this option may improve
performance on slow machines.

ShowScrollHint - if set, a hint window showing the new number of the topmost line, is displayed
whenever the user drags the scrollbar.

UseScrollDelta - if set, editor window content is scrolled by several characters when caret becomes
invisible rather than one character

SystemScrollbars - if set, system scroll bars are displayed; otherwise, custom scrollbars are used.

FlatScrollbars - if set, scroll bars are displayed in flat style. This option works only if SystemScrollBars
is on.

AllowSplitHorz - allows displaying horizontal splitting buttons in the scroll area. This option works if
SystemScrollBars is off and the control has the Dock property set to DockStyle.Fill.

AllowSplitVert - allows displaying a vertical splitting button in the scroll area. This option works if
SystemScrollBars is off and the control has the Dock property set to DockStyle.Fill.

HorzButtons - allows displaying additional buttons in the horizontal scrolling area. This option works
only if SystemScrollBars is off.

VertButtons - allows displaying additional buttons in the vertical scrolling area. This option works
only if SystemScrollBars is off.

VerticalScrollBarAnnotations - allows displaying scroll bar annotations that show special items, such
as line modifications, syntax errors, search results bookmarks, and the caret position, throughout the
entire document within the scroll bar. Individual annotation kinds are controlled by Annotations
property.

19 / 105

Visual Themes
Visual themes allow changing the appearance of all graphical elements in the editor by setting Visual
ThemeType or VisualTheme type properties. Light and Dark visual themes are included, and custom
appearance can be configured via a custom visual theme.

20 / 105

Gutter
The gutter is the area to the left of the text, the purpose of which is to display miscellaneous indicators
for the corresponding lines of text. These indicators include bookmark indicators, line wrapping
indicators, line style icons, line numbers, outlining buttons, and line modification markers.

All the images displayed in the gutter are contained in the gutters image list. The following code gives
an example of how to add a custom icon to this list from another image list (for example, the one
dropped on the form during design time):

21 / 105

The mechanism of the line styles icons allows you to define how the editor will display certain lines of
the text.

The most common use for this is the indication of breakpoint lines and of the current execution point.

For example, the following code defines the style to be used for breakpoints.

(Note in the current version, image # 11 corresponds to the built-in breakpoint indicator image, and #12
corresponds to the current execution point image.

Later on, some lines of the text can be assigned the style:

(Note that here and in the other places of this document, line numbers start at 0.)

Note: Every line can have at most one style at any given time. If you need to remove line style for some
particular line, call:

For SyntaxEdit control appearance of the gutter is controlled by the following properties: Width, Brush
Color, PenColor and Visible. Width property specifies the width of the gutter area, BrushColor specifies
the background color of the gutter area, PenColor specifies the color of the gutter line, and Visible
indicates whether or not to draw the gutter. Note that the gutter can adjust its width if line numbers or
outlining is on and painted on the gutter. SyntaxEdit allows drawing line numbers to indicate the
position of the visible lines inside the document visually. To enable line numbers, you need to set Paint
LineNumbers to true. Turning PaintLinesOnGutter option enables drawing line numbers on the gutter
area; turning it off causes line numbers to be painted immediately after the gutter area. The appearance
of line numbers are controlled by the IGutter's properties: LineNumbersStart, LineNumbersForeColor,
LineNumbersBackColor, LineNumbersAlignment, LineNumbersLeftIndent and LineNumbersRightIndent,
which are intuitively understandable.

Like Microsoft Visual Studio editor, SyntaxEdit provides the ability to track modified lines visually. To
enable this feature, you need to turn PaintLineModificators on. When LineModificators are on, they

 edit.Gutter.Images.Images.Add(imageList1.Images[0]);

 style_id = edit.LineStyles.AddLineStyle("breakpoint",
 Color.White, Color.Red, Color.Gray, 11, LineStyleOptions.BeyondEol);

 edit.Source.LineStyles.SetLineStyle(line_no, style_id);

 edit.Source.LineStyles.RemoveLineStyle(line_no);

22 / 105

indicate lines that were changed since the last saving. New changes are marked with Yellow color;
changes that were done before the last saving are marked with Lime color. Colors can be customized
using LineModificatorChangedColor and LineModificatorSavedColor properties.

Reaction to mouse clicks and double-clicks on the gutter area can be implemented by assigning
handlers to the GutterClick and GutterDblClick events.

Bookmarks
Just as with often-used books, the process of navigating the text can be made more efficient by using
bookmarks. Two kinds of bookmarks are supported by the SyntaxEdit: plain and numbered. The former
can be toggled for the current line using the Ctrl+K Ctrl+K key combination sequence and can be
navigated in a cyclical manner using the Ctrl+K Ctrl+N (next bookmark) or Ctrl+K Ctrl+P (previous
bookmark). The numbered bookmarks have a different flavor: there can be up to ten bookmarks, each
having a number associated with it.

Toggling the numbered bookmark is performed using the Ctrl+K Ctrl+#, and navigation to the specific
bookmark is performed by pressing the Ctrl+# key combination (where # is any of the digits from 0 to
9). There can be only one plain bookmark in any line. Numbered bookmarks do not have such a
limitation. However, only the indicator for the first bookmark in the line will be displayed in the gutter
area if PaintBookMarks is set to true.

Like most other things in the editor, bookmarks can be manipulated programmatically. Note that the list
of bookmarks belongs to the text source, so multiple views of the same source share the same set of
bookmarks.

The following code snippet sets the plain bookmark at the current position:

To set the numbered bookmark, replace int.MaxValue by the bookmark number (0..9).

To clear all the bookmarks set in the text source, call the ClearAllBookMarks() method:

 System.Drawing.Point pos = edit.Position;
 edit.Source.BookMarks.SetBookMark(pos, int.MaxValue);

23 / 105

Navigating to the location defined by a particular bookmark can be performed as follows:

Code Editor supports named bookmarks with descriptions and hyperlinks. The user may see a description
in a tooltip window when moving the cursor over the bookmark and launching the browser with the
specified URL when clicking on the bookmark. Such bookmarks can be set using the following code:

If you need to have custom images, you can change the bookmark indicator images by assigning a
custom image list:

(This code uses the first image from the imageList1, which you could, for example, create by just
dropping a new Image List from the toolbox on the form. For more examples of working with the gutter,
refer to the corresponding section of this manual.)

You can configure bookmarks navigation to work across multiple documents. These documents should
be added to the BookMarkManager class, and every document should have the FileName property
assigned.

 edit.Source.BookMarks.ClearAllBookMarks();

 edit.Source.BookMarks.GotoBookMark(index);

 edit.Source.BookMarks.SetBookMark(edit.Position, 0,
 "Bookmark1", "This is Named Bookmark", "www.alternetsoft.net");

 edit.Gutter.BookMarkImageIndex =
 edit.Gutter.Images.Images.Count;
 edit.Gutter.Images.Images.Add(imageList1.Images[0]);

 BookMarkManager.Register(edit.Source);
 BookMarkManager.SharedBookMarks.Activate += new
 EventHandler<ActivateEventArgs>(DoActivate);
 private void DoActivate(object sender, ActivateEventArgs e)
 {
 foreach (var edit in editors.Values)
 {
 if (edit.Source.FileName == e.FileName)
 {
 ActivateEditorTab(editor);
 break;
 }

24 / 105

In this mode, all bookmarks will be stored in a global list inside BookmarkManager instead of every
individual SyntaxEdit control allowing global navigation through them.

Code Completion (Intellisense)
Although the primary purpose of an editor is to be a convenient tool for the user to enter the text, quite
often, guidance from the editor can significantly improve the effectiveness of the work process. When
editing a text which has some structure (i.e., a computer program in some language), there are often
well-defined sets of input possibilities in certain contexts. For example, for many programming
languages, the sequence "someobject." should be followed by one of the existing field names. To assist
the user in such situations, the text editor can activate a popup list containing all the methods that can
be accessed from the current scope.

If there is a partial word immediately to the left of the current cursor position, the first entry that starts
with that word is highlighted. The user can then continue typing up until the method he meant is
selected or use the up and down arrow keys to navigate the list and then insert the complete method
name by pressing the Enter key.

Automatic Code Completion Invocation
In most cases, the Code Completion list and Signature Help for method parameters are provided by the
parser alongside the list of characters, such as period "." or open parens "(", which invoke code
completion automatically as user types. The task of code completion is to have the list of available
choices appear automatically as user types. For example, after a user types "someobject." the list of class
members for that object is expected to appear, and after they type "somemethod(" the tooltip showing
the list of parameters for that function is expected to appear. It can be customized to show those
popups only if the user stops inputting for some short delay after typing the activating symbol ("." or "(").

 }
 }

25 / 105

The automatic code completion is implemented by Roslyn C# and Visual Basic parsers,
TypeScript/JavaScript parsers, and Advanced C#, J#, Visual Basic, VBScript, JavaScript, C, XML, and Python
parsers.

For example, automatic code completion is attempted after typing a period ('.') following a member
(member access expression), typing an open brace ('(') following a member (invocation expression or
object creation expression), typing a period ('.') inside using section, typing less sign ('<') inside XML
comments, etc. This feature is implemented as close as possible to the Visual Studio .NET editor, so it
works intuitively. On top of that, Roslyn-based parsers are configured to invoke code completion when
the user starts typing identifiers.

When these parsers are used, you still can control some aspects of code completion, for example delay
before code completion window appears, using the NeedCodeCompletion event, which will be discussed
later. Moreover, for advanced parsers you can register your own types and objects, namespaces and
assemblies for code completion using the CompletionRepository property of SyntaxParser.

To make types from most commonly used assemblies such as System, System.Drawing, and
System.Windows.Forms to be available for code completion, you can call the following method

If you need to provide code completion for assemblies declared in other assemblies, you need to
register these assemblies this way:

You may need to register types for code completion that are not declared in the assembly, but present in
the form of source code somewhere else.

For Roslyn-based parsers you can rely on underlying solution/project/document object model:

For one of advanced parsers you need first to create SyntaxParser, load this file into the Strings object,
and then add parsed SyntaxTree to the code completion repository. The following code demonstrates
how it can be accomplished:

 csParser1.Repository.RegisterDefaultAssemblies();

csParser1.Repository.RegisterAssembly("System.Xml");

csParser1.Repository.RegisterCodeFiles(new string[] { "MyFile.cs" });

ISyntaxParser parser = new Alternet.Syntax.Parsers.Advanced.CsParser();
parser.Strings = new TextStrings();
parser.Strings.LoadFile("MyFile.cs")

26 / 105

Code Outlining
The SyntaxEdit control supports outlining, a text navigation feature that can make navigation of large
structured texts more effective. The essence of outlining lies in defining sections of the text as structural
units that, once collapsed, can be visually replaced by a shorter representation, i.e., by an ellipsis ("...").
During the text navigation, the user can dynamically switch between the collapsed and complete
representation of any particular section. Sections can be nested.

The section can be expanded by clicking on the "+" button, double-clicking the proxy text, or pressing
the Ctrl+M Ctrl+M key sequence (in the default key mapping). The section can be collapsed by clicking
on the "-" button or pressing the Ctrl+M Ctrl+M key sequence. All the sections can be collapsed or
expanded at once using the Ctrl+M Ctrl+L key sequence.

Outlining is the property of the SyntaxEdit control itself, not of the TextSource. Thus it is possible to have
two views of the same text, one with outlining and another without or even to have completely different
structural parts defined.

All the aspects of the outlining are controlled via the Outlining property of the SyntaxEdit. The outlining
can be enabled or disabled using the AllowOutlining property either in design time or at runtime. The
look of the outlining is controlled by the OutlineColor and OutlineOptions properties.

There are two approaches to defining outline sections.

Direct Definition of Outline Sections
Outline sections can be explicitly defined by calling the appropriate methods of the Outlining property,
i.e.:

parser.ReparseText();
csParser1.CompletionRepository.RegisterSyntaxTree(parser.SyntaxTree);

 edit.Outlining.Outline(new Point(0, 0), new Point(int.MaxValue, 0), 0, "...").Visible
= false;`

27 / 105

This code snippet defines the section of the first level consisting of the entire first line of the text, using
ellipsis ("...") as the proxy text and being in a collapsed state.

While this approach is simple, it has one significant drawback: if sections representing structural units are
defined by the content of the text, which a user can edit, sections have to be constantly kept in sync with
the text, which can be a non-trivial task.

Automatic Definition of Outline Sections Using the Syntax Parser
The syntax parsing framework has to be employed to provide automatic code outlining. This approach
may seem to be more complex at first look; however, it provides consistent results. To implement this
approach, a class descending from the SyntaxParser class needs to be defined, and the Outline method
needs to be implemented. This method will be frequently called by the SyntaxEdit whenever the text
changes, so to provide the user with a smooth editing experience, the implementation should be
relatively fast.

Code Editor includes parsers that support automatic outlining for C#, Visual Basic, J#, JavaScript,
VBScript, Ansi-C, SQL, HTML, XML, and Python languages.

The following example demonstrates how to implement the parser marks every line starting from the
sharp ("#") sign as a separate outline section.

 private void InitializeComponent()
 {
 ...
 this.parser1 = new XParser();
 ...
 }
 public class XParser: SyntaxParser
 {
 public XParser()
 {
 Options = SyntaxOptions.Outline;
 }
 public override int Outline(IList<IRange> Ranges)
 {
 Ranges.Clear();
 for(int i = 0; i < Strings.Count; i++)
 {
 if(Strings[i].ToString().StartsWith("#"))
 {
 Ranges.Add(new OutlineRange(
 new Point(0, i),
 new Point(int.MaxValue, i),
 0, "...", false));

28 / 105

 }
 }
 return Ranges.Count;
 }
 }

29 / 105

Code Editor Extended Features (WPF)
Code Editor provides advanced text editing functionality, such as customizable keyboard mapping,
HyperText handling, spell-checking integration, printing and exporting, macro recording and playback,
and miscellaneous display features.

Keyboard Mapping
While the TextEditor closely mimics the key-mapping common to most of Microsoft's products. It is
entirely customizable: you can add or change the behavior of specific keys or even define an entirely
different key-mapping.

To assign an action to some key combination, use the following code:

This code would make the Ctrl+Alt+W key combination execute the edit_Action method.

Or to pass some object to the key handler:

To remove some key handler, regardless of whether you have added it yourself or it is the default one,
call:

The code described before is used to manage the key handling in the default state. In fact, the key
handling is slightly more complex than that: the TextEditor's key handling mechanism can be in different
states other than the default one. Every state has its own key mapping table. Key mapping for bookmark

 private void edit_Action()
 {
 ...
 }
 ...
 edit.KeyList.Add(Keys.W | Keys.Control | Keys.Alt, new
 KeyEvent(edit_Action));

 private void edit_Action(object o)
 {
 ...
 }
 ...
 edit.KeyList.Add(Keys.W | Keys.Control | Keys.Alt, new
 KeyEventEx(edit_Action), some_object);

 edit.KeyList.Remove(Keys.A | Keys.Control);

30 / 105

operations can be a good example: after the user presses the Ctrl+K key combination, combinations
Ctrl+K, Ctrl+N, Ctrl+P, Ctrl+L (the list is incomplete) obtain the new meaning. If a key combination is
pressed for which there is no assignment in some non-default state, then the state is changed to default,
and the combination is evaluated in the new context. TextEditor defines four different non-default states,
but you can implement your own:

This code creates a state that is activated by pressing the Ctrl+W key combination, in which the Tab key
causes the edit_Action to be executed. The state is changed back to default when the user presses some
key other than the Tab key. Until now, we have only examined the cases where you add some new
functionality or suppress some existing one. There also might be a case when you want to use an entirely
different key mapping, for example, to simulate some other environment your users are familiar with. To
accomplish this, it is necessary to completely clear the current key mapping and then assign every
function performed by the editor to some key. Note that this means every function: even such trivial
things as cursor navigation and insertion of a new line, are performed according to the key mapping.

For example, the following code assigns the editor's key-mapping to a single action defined: "Select All",
which is assigned to the Ctrl+X key combination.

URL handling
The TextEditor can be set up to handle pieces of text that look like some kind of URL by setting the
HighlightHyperText property to true. The handling consists of highlighting those text pieces and
processing clicks on them. By default, clicking the URL causes the operating system default action to be
performed (i.e., launching a browser or an email client). However, you can override this behavior by
assigning the JumpToUrl event handler.

 edit.KeyList.Add(Keys.W | Keys.Control, null, 0, 5);
 edit.KeyList.Add(Keys.Tab, new KeyEvent(edit_Action), 5, 5);

 edit.KeyList.Clear();
 edit.KeyList.Add(Keys.X | Keys.Control,
 ((EventHandlers)edit.KeyList.Handlers)SelectAllEvent);

 private void edit_JumpToUrl(object sender, UrlJumpEventArgs e)
 {
 if(is_our_url(e.Text))
 {
 process_url(e.Text);
 e.Handled = true;
 }
 }

31 / 105

Spellchecker Interface
The TextEditor supports the spell-as-you-type spell checker integration. To enable spelling for the editor,
set its CheckSpelling property to true and assign the WordSpell event handler.

The following artificial example considers any word longer than three characters to be correct:

Incorrect words are displayed with the wiggly underline (the default color is red, but it can be changed
using the SpellColor property). In real-life scenarios, you need to use some third-party
software/dictionary to check the text. Another alternative is using a word-list file. Many of them,
including Public Domain or free ones, can be found on the Internet. Refer to a Miscellaneous quick start
project, which has one of these dictionaries.

Another helpful feature supported by TextEditor is AutoCorrect, allowing you to auto-correct words
when typing. To enable this feature, you need to set the AutoCorrection property to true and handle the
AutoCorrect event to provide replacements for words that were typed incorrectly.

Printing and Exporting
TextEditor includes support for printing, print previewing, and exporting to RTF and HTML.

Exporting can be performed as simply as this:

Printing tasks are performed and configured via the Printing property of the TextEditor.

For example, to show the print preview dialog, call:

TextEditor control supports adding user-defined information while printing.

To add some text to the footer:

 private void edit_WordSpell(object sender, WordSpellEventArgs e)
 {
 e.Correct = e.Text.Length > 3;
 }
 ...
 this.edit.WordSpell += new WordSpellEvent(this.edit_WordSpell);

 edit.SaveFile(FileName, new RtfExport());

 edit.Printing.ExecutePrintPreviewDialog();

32 / 105

Text in headers and footers can contain substitution tags. The standard ones are: [page], [pages], [date],
[time] and [username].

Macro Recording and PlayBack
TextEditor has macro recording and playback capabilities. It allows recording sequences of keyboard
commands and playing them later. Note that mouse input is not recorded.

This feature enables you to store a set of frequently used editing commands. Set MacroRecording
property to start/finish macro recording. Use the PlayBack method to repeat the stored command
sequence.

White-space Display
It is sometimes desirable for the user to see the codes that influence the text's layout and are usually
invisible. These codes are space, tab, end-of-line, and the end-of-file (not really a code) and are often
collectively referred to as white space. The TextEditor has the option to display them and control their
appearance.

The display of the white space is enabled using the Visible property. The color used to display white-
space codes is determined by the SymbolColor property, and the characters used to display those codes
are determined by EofSymbol, EolSymbol, SpaceSymbol, and TabSymbol properties.

Line Separator
It is possible to have lines of the editor to be separated by thin horizontal lines and to have the current
line highlighted. This behavior is controlled by the LineSeparator property.

The following options are available:

HighlightCurrentLine specifies that the current line in the editor will be highlighted using the
HighlightColor for the background.

HideHighlighting specifies that the highlighting of the current line should be hidden when the
editor loses focus.

 edit.Printing.Footer.CenterText = "draft";

33 / 105

SeparateLines specifies that a thin horizontal line of LineColor should be drawn between each line of
text.

SeparateWrapLines specifies that each visual line of text produced as a result of word-wrap should
be separated in the same manner as separate lines (works only if the SeparateLines option is also
specified).

SeparateContent specifies that a line separator will be drawn between sections of the code (for
example, between methods) if TextEditor control is associated with SyntaxParser supporting this
feature.

Code snippets
The code snippets are the next code completion provider, allowing to insertion of frequently used
fragments of code. Code snippets can be inserted into the editor by pressing the Tab key after the
snippet shortcut or by executing the code snippet popup window with Ctrl + K + X key sequence, or
activated programmatically by calling the CodeSnippets method of the TextEditor.

The purpose of the code snippets is to permit the user to quickly enter one of the predefined fragments
of text. If the code snippet has fields declared, the editor allows modifying their values, causing updating
field values inside the whole snippet.

The following picture illustrates the usage of the code snippets.

Hidden and Read-Only Lines
TextEditor control can mark certain lines to be read-only or hide them, so the user can't see them. This
can be achieved by using SetLineHidden and SetLineReadonly methods. For hidden lines to take effect,
the AllowHiddenLines property needs to be set to true. Read-only lines can be made visually different
from editable lines by setting ReadonlyBackColor property. Sometimes it's required to mark certain lines

34 / 105

to be both hidden and read-only. This way, they can not be deleted if the user selects the outer block
containing them and tries to delete it.

Structure Guidelines
TextEditor control can display dashed lines between syntax blocks for some parsers (Roslyn-based,
TypeScript, and some advanced parsers), helping the user to better understand the structure of the
document being edited. This behavior is controlled by a Parser and can be switched off by the
StructureGuideLines parser option.

Minimap
A Minimap (code outline) gives you a high-level overview of your source code, which is useful for quick
navigation and code understanding. A file's minimap is shown on the right side of the editor. You can
click the shaded area to quickly jump to different sections of your file.

35 / 105

36 / 105

Code Editor Basic Features (WPF)
Code Editor matches most of the Visual Studio code editor features, such as Selection, Code Completion,
Code Outlining, Search/Replace, Navigation and Undo, and many more.

Editing features
Code Editor provides an extended set of methods and properties for text modifications and navigating
within the text content. Most of these methods are called implicitly when the user edits the text in the
edit control or presses the arrows and PageUp, PageDown, End, or Hope keys. The most commonly used
methods and properties are listed below:

Position - gets or sets the current position (Column, Row) within the text.

NewLine - inserts new line at the current position and number of spaces or tabs according to the
indentation options.

Insert - inserts string at the current position.

DeleteRight - deletes a number of characters to the right of the current position.

DeleteLeft - deletes a number of characters to the right of the current position.

BreakLine - inserts a line break at the given position.

UnBreakLine - joins two lines at the end of a current line.

MoveCharLeft - moves the current position to one character left.

MoveCharRight - moves the current position to one character right.

MoveLineDown - moves the current position to one line below.

MoveLineUp - moves the current position to one line above.

.* MoveFileBegin - moves the current position to the beginning of the text.

.* MoveFileEnd - moves the current position to the end of the text.

All such modifications are translated to the underlying TextSource component, which also maintains the
list of all edits so the user can undo them.

Selection
Just like almost any text editor, the TextEditor supports a concept of text selection and a wide range of
operations on it. All the selection-related aspects are controlled via the Selection property. Selections can

37 / 105

be of two types: traditional stream-type selection and block-type selection. The latter can be created by
navigating the text with navigation keys holding Shift and Alt keys held together.

SelectionBrush and SelectionForeColor define the background and the foreground colors used to mark
the currently selected text. Selection.InActiveBackColor and Selection.InActiveForeColor are used when
the editor is out of focus.

The Options controls different aspects of the behavior of selections.

DisableSelection completely disables selection support in the editor.

DisableDragging disables drag-n-drop operations on the selection.

SelectBeyondEol allows selection in the virtual space (if the NavigateOptions.BeyondEol is enabled)

UseColors instructs the editor to use the same foreground colors for selected text as the ones used
for unselected text (i.e., any syntax highlighting will be visible). Note for this to be useful. The section
background color must be in contrast with all possible foreground colors.

HideSelection causes the selection to become invisible when the editor loses focus.

SelectLineOnDblClick allows the user to select the entire line by double-clicking on it.

DeselectOnCopy causes the selection to be removed after the user performs copy selection to
clipboard operation.

PersistentBlocks causes the selection to be retained after the user has finished making it and has
started other navigation.

OverwriteBlocks causes the new input to overwrite the currently selected text.

SmartFormat allows formatting blocks when pasting according to the rules defined by the syntax
parser.

WordSelect causes whole words to be selected rather than individual characters when using mouse
selection.

DrawBorder causes Edit control to draw a border around the selection

SelectLineOnTripleClick allows selecting whole line rather than a single word by triple clicking the
mouse

DeselectOnDblClick causes the selection to be cleared by mouse dblclick.

ConvertToSpacesOnPaste specifies that selection should convert all tabs to spaces in the pasted text
when the Lines.UseSpaces is on.

38 / 105

RtfClipboard causes the selection to copy its content in text and RTF formats.

ClearOnDrag causes selected text to be cleared after dragging from an external source

CopyLineWhenEmpty allows copying whole lines when the selection is empty

DisableCodeSnippetOnTab - disables code snippets insertion when pressing the Tab key.

SelectWordOnCtrlClick causes the word under the cursor to be selected when the user holds the Ctrl
key.

ExtendedBlockMode causes text being typed to be inserted into all selected lines within the
rectangular block.

It is possible to programmatically select text by setting SelectionStart and SelectionLength properties, or
with the help of SetSelection method.

The selected text can be retrieved or set via the SelectedText property.

A developer can perform various operations on the current selection. Some of them are:

IsEmpty checks whether there is any text selected.

SetSelection selects the specified rectangular area.

SelectAll() selects the whole document.

Cut()/Copy()/Paste() performs standard operations like copying text to the clipboard, cutting text to
the clipboard and pasting text from the clipboard.

IsPosInSelection checks if the specified position lies within the selection.

Clear() clears selection (this does not affect the text itself).

Move moves or copies the currently selected text to a new location.

SmartFormat() formats the selected text according to the rules defined by the syntax parser.

LowerCase()/UpperCase()/Capitalize() change the case of the currently selected text.

UnIndent()/UnIndent() change the indent of the currently selected text.

In fact, if some action can be performed by the user, it can also be performed programmatically:

 if(!edit.Selection.IsEmpty)
 edit.Selection.SelectedText =

39 / 105

This code encloses the currently selected text in brackets.

Searching and Replacing
Among the operations that can be performed on the text are searching and replacing text strings. Unlike
the standard multi-line text editor, which does not implement such functionality, the TextEditor control
comes with built-in support for them. It's ready to use out-of-the-box: when the user presses the Ctrl+F
key combination, the search dialog box appears:

The text-replace dialog can be activated by pressing Ctrl+H. Besides using the UI to control the process,
all the operations can be executed programmatically by calling the corresponding methods of the Text
Editor.

For example, to find some string, you could use the following code:

Or, with regular expressions:

To activate the Search Dialog:

Moreover, the Search and Replace dialog box functionality is not hardwired: you can replace the dialog
box by implementing the ISearchDialog interface, assigning it to the editor by setting its SearchDialog
property. The built-in dialog can serve as a good example and a starting point.

 "(" + edit.Selection.SelectedText + ")";

 edit.Find("some string");

 edit.Find(" ", SearchOptions.RegularExpressions, new
 System.Text.RegularExpressions.Regex("a.?z"));

 edit.DisplaySearchDialog();

40 / 105

If you need to perform the Search and Replace operation without any user interaction, you can use the
ReplaceAll method.

I.e.:

After this, every occurrence of a "bad" word in the entire text will be replaced by the "good".

Note that this would move the cursor position to the place where the last replacement has been made,
so if you need it to be genuinely unnoticeable for the user, you need to enclose this call in the code
which saves and restores the current cursor position:

Search/Replace function can work across multiple documents. To allow the search to find text in multiple
editors, you will need to set SearchManager.Shared to true and provide a list of editors to perform a
search in its InitSearch event handlers and return/navigate to the appropriate editor in the GetSearch
event handler:

 edit.ReplaceAll("bad", "good", SearchOptions.WholeWordsOnly |
 SearchOptions.EntireScope, out count);

 System.Drawing.Point pos;
 pos = edit.Position;
 edit.ReplaceAll("bad", "good", SearchOptions.WholeWordsOnly |
 SearchOptions.EntireScope, out count);
 edit.Position = pos;

 SearchManager.SharedSearch.Shared = true;
 SearchManager.SharedSearch.InitSearch +=
 new InitSearchEvent(DoInitSearch);
 SearchManager.SharedSearch.GetSearch +=
 new GetSearchEvent(DoGetSearch);

 private void DoInitSearch(object sender, InitSearchEventArgs e)
 {
 e.Search = GetActiveTextEditor() as ISearch;
 foreach (var edit in editors.Values)
 {
 edit.SearchGlobal = true;
 e.SearchList.Add(edit.Source.FileName);
 }
 }

 private void DoGetSearch(object sender, GetSearchEventArgs e)
 {

41 / 105

Scroll Bars and Split View
The appearance and behavior of scrollbars are controlled by the Scrolling property.

The behavior of the scrollbars is controlled by ScrollingOptions.

You can also use Scrolling.Options to allow TextEditor to split its content by setting AllowVerticalEditor
Split property. The splitter is displayed in the left-bottom corner allowing to split TextEditor's content
vertically.

SmoothScroll - if set, the display is updated as the user drags the scrollbar. Otherwise, the display is
updated only when the user releases the scrollbar thumb. Disabling this option may improve
performance on slow machines.

ShowScrollHint - if set, a hint window showing the new number of the topmost line, is displayed
whenever the user drags the scrollbar.

UseScrollDelta - if set, editor window content is scrolled by several characters when caret becomes
invisible rather than one character

SystemScrollbars - if set, system scroll bars are displayed; otherwise, custom scrollbars are used.

FlatScrollbars - if set, scroll bars are displayed in flat style. This option works only if SystemScrollBars
is on.

AllowSplitHorz - allows displaying horizontal splitting buttons in the scroll area. This option works if
SystemScrollBars is off and the control has the Dock property set to DockStyle.Fill.

AllowSplitVert - allows displaying a vertical splitting button in the scroll area. This option works if
SystemScrollBars is off and the control has the Dock property set to DockStyle.Fill.

HorzButtons - allows displaying additional buttons in the horizontal scrolling area. This option works
only if SystemScrollBars is off.

 foreach (var edit in editors.Values)
 {
 if (edit.Source.FileName == e.FileName)
 {
 e.Search = edit as ISearch;
 break;
 }
 }
 }

42 / 105

VertButtons - allows displaying additional buttons in the vertical scrolling area. This option works
only if SystemScrollBars is off.

VerticalScrollBarAnnotations - allows displaying scroll bar annotations that show special items, such
as line modifications, syntax errors, search results bookmarks, and the caret position, throughout the
entire document within the scroll bar. Individual annotation kinds are controlled by Annotations
property.

Visual Themes
Visual themes allow changing the appearance of all graphical elements in the editor by setting Visual
ThemeType or VisualTheme type properties. Light and Dark visual themes are included, and custom
appearance can be configured via a custom visual theme.

43 / 105

Gutter
The gutter is the area to the left of the text, which displays various indicators for the corresponding lines
of text. These indicators include bookmark indicators, line wrapping indicators, line style icons, line
numbers, outlining buttons, and line modification markers.

All the images displayed in the gutter are contained in the gutters image list. The following code gives
an example of how to add a custom icon to this list from another image list (for example, the one
dropped on the form during design time):

44 / 105

The mechanism of the line styles icons allows you to define how the editor will display certain lines of
the text.

The most common use for this is the indication of breakpoint lines and the current execution point.

For example, the following code defines the style to be used for breakpoints.

(Note in the current version, image # 11 corresponds to the built-in breakpoint indicator image, and #12
corresponds to the current execution point image.

Later on, some lines of the text can be assigned the style:

(Note that here and in the other places of this document, line numbers start at 0.)

Note: Every line can have at most one style at any given time. If you need to remove line style for some
particular line, call:

For TextEditor control, the appearance of the gutter is controlled by the following properties:
<xref:Alternet.Editor.Wpf.IGutter.Width>, <xref:Alternet.Editor.Wpf.IGutter.BrushColor>,
<xref:Alternet.Editor.Wpf.IGutter.PenColor> and <xref:Alternet.Editor.Wpf.IGutter.Visible>. Width
property specifies the width of the gutter area, <xref:Alternet.Editor.Wpf.IGutter.BrushColor> specifies
the background color of the gutter area, <xref:Alternet.Editor.Wpf.IGutter.PenColor> specifies the color
of the gutter line, and <xref:Alternet.Editor.Wpf.IGutter.Visible> indicates whether or not to draw the
gutter. Note that the gutter can adjust its width if line numbers or outlining is on and painted on the
gutter. TextEditor allows drawing line numbers to visually indicate position of the visible lines inside the
document. To enable line numbers, you need to set
<xref:Alternet.Editor.Wpf.GutterOptions.PaintLineNumbers> to true. Turning
<xref:Alternet.Editor.Wpf.GutterOptions.PaintLinesOnGutter> option enables drawing line numbers on
the gutter area; turning it off causes line numbers to be painted immediately after the gutter area. The
appearance of line numbers is controlled by the <xref:Alternet.Editor.Wpf.IGutter>'s properties:
<xref:Alternet.Editor.Wpf.IGutter.LineNumbersStart>,

 edit.Gutter.Images.Images.Add(imageList1.Images[0]);

 style_id = edit.LineStyles.AddLineStyle("breakpoint",
 Color.White, Color.Red, Color.Gray, 11, LineStyleOptions.BeyondEol);

 edit.Source.LineStyles.SetLineStyle(line_no, style_id);

 edit.Source.LineStyles.RemoveLineStyle(line_no);

45 / 105

<xref:Alternet.Editor.Wpf.IGutter.LineNumbersForeColor>,
<xref:Alternet.Editor.Wpf.IGutter.LineNumbersBackColor>,
<xref:Alternet.Editor.Wpf.IGutter.LineNumbersAlignment>,
<xref:Alternet.Editor.Wpf.IGutter.LineNumbersLeftIndent> and
<xref:Alternet.Editor.Wpf.IGutter.LineNumbersRightIndent>, which are intuitively understandable.

Like Microsoft Visual Studio editor, TextEditor provides the ability to visually track modified lines. To
enable this feature, you need to turn <xref:Alternet.Editor.Wpf.GutterOptions.PaintLineModificators> on.
When LineModificators are on, they indicate lines that were changed since the last saving. New changes
are marked with Yellow color; changes that were done before the last saving are marked with Lime color.
Colors can be customized using <xref:Alternet.Editor.Wpf.IGutter.LineModificatorChangedColor> and
<xref:Alternet.Editor.Wpf.IGutter.LineModificatorSavedColor> properties.

Reaction to mouse clicks and double-clicks on the gutter area can be implemented by assigning
handlers to the GutterClick and GutterDblClick events.

Bookmarks
Just as with often used reference books, the process of navigating the text can be made more efficient
with the usage of bookmarks. Two kinds of bookmarks are supported by the TextEditor: plain and
numbered. The former can be toggled for the current line using the Ctrl+K Ctrl+K key combination
sequence and can be navigated in a cyclical manner using the Ctrl+K Ctrl+N (next bookmark) or Ctrl+K
Ctrl+P (previous bookmark). The numbered bookmarks have a different flavor: there can be up to ten
bookmarks, each having a number associated with it.

Toggling the numbered bookmark is performed using the Ctrl+K Ctrl+#, and navigation to the specific
bookmark is performed by pressing the Ctrl+# key combination (where # is any of the digits from 0 to
9). There can be only one plain bookmark in any line. Numbered bookmarks do not have such a
limitation. However, only the indicator for the first bookmark in the line will be displayed in the gutter
area if <xref:Alternet.Editor.Wpf.GutterOptions.PaintBookMarks> is set to true.

46 / 105

Like most other things in the editor, bookmarks can be manipulated programmatically. Note that the list
of bookmarks belongs to the text source, so multiple views of the same source share the same set of
bookmarks.

The following code snippet sets the plain bookmark at the current position:

To set the numbered bookmark, replace int.MaxValue by the bookmark number (0..9).

To clear all the bookmarks set in the text source, call the ClearAllBookMarks() method:

Navigating to the location defined by a particular bookmark can be performed as follows:

Code Editor supports named bookmarks with descriptions and hyperlinks. The user may see a description
in a tooltip window when moving the cursor over the bookmark and launching the browser with the
specified URL when clicking on the bookmark. Such bookmarks can be set using the following code:

If you need to have custom images, you can change the bookmark indicator images by assigning a
custom image list:

(This code uses the first image from the imageList1, which you could, for example, create by just
dropping a new Image List from the toolbox on the form. For more examples of working with the gutter,
refer to the corresponding section of this manual.)

You can configure bookmarks navigation to work across multiple documents. These documents should
be added to the BookMarkManager class, and every document should have the FileName property
assigned.

 System.Drawing.Point pos = edit.Position;
 edit.Source.BookMarks.SetBookMark(pos, int.MaxValue);

 edit.Source.BookMarks.ClearAllBookMarks();

 edit.Source.BookMarks.GotoBookMark(index);

 edit.Source.BookMarks.SetBookMark(edit.Position, 0,
 "Bookmark1", "This is Named Bookmark", "www.alternetsoft.net");

 edit.Gutter.BookMarkImageIndex =
 edit.Gutter.Images.Images.Count;
 edit.Gutter.Images.Images.Add(imageList1.Images[0]);

47 / 105

In this mode, all bookmarks will be stored in a global list inside BookmarkManager instead of every
individual TextEditor control allowing global navigation through them.

Code Completion (Intellisense)
Although the main purpose of an editor is to be a convenient tool for the user to enter the text, quite
often, guidance from the editor can significantly improve the effectiveness of the work process. When
editing a text with some structure (i.e., a computer program in some language), there are often well-
defined input possibilities in certain contexts. For example, for many programming languages, the
sequence "someobject." should be followed by one of the existing field names. To assist the user in such
situations, the text editor can activate a popup list containing all the methods that can be accessed from
the current scope.

If there is a partial word immediately to the left of the current cursor position, the first entry that starts
with that word is highlighted. The user can then continue typing up until the method he meant is

 BookMarkManager.Register(edit.Source);
 BookMarkManager.SharedBookMarks.Activate += new
 EventHandler<ActivateEventArgs>(DoActivate);
 private void DoActivate(object sender, ActivateEventArgs e)
 {
 foreach (var edit in editors.Values)
 {
 if (edit.Source.FileName == e.FileName)
 {
 ActivateEditorTab(editor);
 break;
 }
 }
 }

48 / 105

selected or use the up and down arrow keys to navigate the list and then insert the complete method
name by pressing the Enter key.

Automatic Code Completion Invocation
In most cases, the Code Completion list and Signature Help for method parameters are provided by the
parser alongside the list of characters, such as period "." or open parens "(", which invoke code
completion automatically as user types. The task of code completion is to have the list of available
choices appear automatically as user types. For example, after the user types "someobject." the list of
class members for that object is expected to appear, and after they type "somemethod(" the tooltip
showing the list of parameters for that function is expected to appear. It can be customized to show
those popups only if the user stops input for some short delay after typing the activating symbol ("." or "
(").

The automatic code completion is implemented by Roslyn C# and Visual Basic parsers,
TypeScript/JavaScript parsers, as well as by Advanced C#, J#, Visual Basic, VBScript, JavaScript, C, XML,
and Python parsers.

For example, automatic code completion is attempted after typing a period ('.') following a member
(member access expression), typing an open brace ('(') following a member (invocation expression or
object creation expression), typing a period ('.') inside using section, typing less sign ('<') inside XML
comments, etc. This feature is implemented as close as possible to the Visual Studio .NET editor, so it
works in an intuitively understandable way. On top of that, Roslyn-based parsers are configured to
invoke code completion when the user starts typing identifiers.

When these parsers are used, you still can control some aspects of code completion, for example, delay
before the code completion window appears, using the NeedCodeCompletion event, which will be
discussed later. Moreover, for advanced parsers, you can register your types and objects, namespaces,
and assemblies for code completion using the CompletionRepository property of SyntaxParser.

To make types from the most commonly used assemblies such as System, System.Drawing, and
System.Windows.Forms to be available for code completion, you can call the following method.

If you need to provide code completion for assemblies declared in other assemblies, you need to
register these assemblies this way:

You may need to register types for code completion that are not declared in the assembly but are
present in the source code somewhere else.

 csParser1.Repository.RegisterDefaultAssemblies();

 csParser1.Repository.RegisterAssembly("System.Xml");

49 / 105

For Roslyn-based parsers, you can rely on the underlying solution/project/document object model:

For one of advanced parsers you need to create SyntaxParser, load this file into the Strings object, and
then add parsed SyntaxTree to the code completion repository. The following code demonstrates how it
can be accomplished:

Code Outlining
The TextEditor control supports outlining, a text navigation feature that can make navigation of large
structured texts more effective. The essence of outlining lies in defining sections of the text as structural
units that, once collapsed, can be visually replaced by a shorter representation, i.e., by an ellipsis ("...").
During the text navigation, the user can dynamically switch between the collapsed and complete
representation of any particular section. Sections can be nested.

The section can be expanded by clicking on the "+" button, double-clicking the proxy text, or pressing
the Ctrl+M Ctrl+M key sequence (in the default key mapping). The section can be collapsed by clicking
on the "-" button or pressing the Ctrl+M Ctrl+M key sequence. All the sections can be globally collapsed
or expanded using the Ctrl+M Ctrl+L key sequence.

Outlining is the property of the TextEditor control itself, not of the TextSource. Thus it is possible to have
two views of the same text, one with outlining and another without, or even to have completely different
structural parts defined.

All the aspects of the outlining are controlled via the Outlining property of the TextEditor. The outlining
can be enabled or disabled using the AllowOutlining property either in design time or at runtime. The

 csParser1.Repository.RegisterCodeFiles(new string[] { "MyFile.cs" });

 ISyntaxParser parser = new Alternet.Syntax.Parsers.Advanced.CsParser();
 parser.Strings = new TextStrings();
 parser.Strings.LoadFile("MyFile.cs")
 parser.ReparseText();
 csParser1.CompletionRepository.RegisterSyntaxTree(parser.SyntaxTree);

50 / 105

look of the outlining is controlled by the OutlineColor and OutlineOptions properties.

There are two approaches to defining outline sections.

Direct Definition of Outline Sections
Outline sections can be explicitly defined by calling the appropriate methods of the Outlining property,
i.e.:

This code snippet defines the first level section consisting of the entire first line of the text, using ellipsis
("...") as the proxy text and being in a collapsed state.

While this approach is simple, it has one significant drawback: if sections represent structural units
defined by the content of the text, and the user can edit the text, sections have to be constantly kept in
sync with the text, which can be a non-trivial task.

Automatic Definition of Outline Sections Using the Syntax Parser
To provide automatic code outlining, the syntax parsing framework has to be employed. This approach
may seem to be more complex at first look; however, it provides consistent results. To implement this
approach, a class descending from the SyntaxParser class needs to be defined, and the Outline method
needs to be implemented. This method will be frequently called by the TextEditor whenever the text
changes, to provide the user with a smooth editing experience, the implementation should be relatively
fast.

Code Editor includes parsers that support automatic outlining for C#, Visual Basic, J#, JavaScript,
VBScript, Ansi-C, SQL, HTML, XML, and Python languages.

The following example demonstrates how to implement a parser that marks every line starting from the
sharp ("#") sign as a separate outline section.

 edit.Outlining.Outline(new Point(0, 0), new Point(int.MaxValue, 0), 0, "...").Visible
= false;`

 private void InitializeComponent()
 {
 ...
 this.parser1 = new XParser();
 ...
 }
 public class XParser: SyntaxParser
 {
 public XParser()
 {

51 / 105

 Options = SyntaxOptions.Outline;
 }
 public override int Outline(IList<IRange> Ranges)
 {
 Ranges.Clear();
 for(int i = 0; i < Strings.Count; i++)
 {
 if(Strings[i].ToString().StartsWith("#"))
 {
 Ranges.Add(new OutlineRange(
 new Point(0, i),
 new Point(int.MaxValue, i),
 0, "...", false));
 }
 }
 return Ranges.Count;
 }
 }

52 / 105

Code Editor Extended Features (WPF)
Code Editor provides advanced text editing functionality such as customizable keyboard mapping,
HyperText handling, spell-checking integration, printing and exporting, macro recording and playback
and miscellaneous display features.

Keyboard Mapping
While the TextEditor closely mimics the key-mapping common to most of Microsoft's products, it is
completely customizable: you can add or change behavior of certain keys or even define an entirely
different key-mapping.

To assign an action to some key combination, use the following code:

This would make the Ctrl+Alt+W key combination execute the edit_Action method.

Or, to pass some object to the key handler:

To remove some key handler, regardless of whether you have added it yourself, or it is the default one,
call:

The code described before is used to manage the key handling in the default state. In fact, the key
handling is slightly more complex than that: the TextEditor's key handling mechanism can be in different
states, other than the default one. Every state has its own key mapping table. Key mapping for bookmark

 private void edit_Action()
 {
 ...
 }
 ...
 edit.KeyList.Add(Keys.W | Keys.Control | Keys.Alt, new
 KeyEvent(edit_Action));

 private void edit_Action(object o)
 {
 ...
 }
 ...
 edit.KeyList.Add(Keys.W | Keys.Control | Keys.Alt, new
 KeyEventEx(edit_Action), some_object);

 edit.KeyList.Remove(Keys.A | Keys.Control);

53 / 105

operations can serve as a good example: after the user presses the Ctrl+K key combination,
combinations Ctrl+K, Ctrl+N, Ctrl+P, Ctrl+L (the list is incomplete) obtain the new meaning. If a key
combination is pressed for which there is no assignment in some non-default state, then the state is
changed to default, and the combination is evaluated in the new context. TextEditor defines four
different non-default states, but you can implement your own:

This code creates a state that is activated by pressing the Ctrl+W key combination, and in which the Tab
key causes the edit_Action to be executed. The state is changed back to default when the user presses
some key other than the Tab. Up until now we have only examined the cases where you add some new
functionality, or suppress some existing one. There also might be a case, when you want to use an
entirely different key mapping, for example, to simulate some other environment your users are familiar
with. To accomplish this, it is necessary to completely clear the current key mapping, and then to assign
every function performed by the editor to some key. Note, that this really means every function: even
such trivial things as cursor navigation and insertion of a new line are performed according to the key
mapping.

For example, the following code assigns the editor's key-mapping to a single action defined: "Select All",
which is assigned to the Ctrl+X key combination

URL handling
The TextEditor can be set up to handle pieces of text that look like some kind of an URL by setting the
HighlightHyperText property to true. The handling consists of highlighting those pieces of text, and of
processing clicks on them. By default, clicking the URL causes the operating system default action to be
performed (i.e. launching a browser or an email client), however, you can override this behavior by
assigning the JumpToUrl event handler.

 edit.KeyList.Add(Keys.W | Keys.Control, null, 0, 5);
 edit.KeyList.Add(Keys.Tab, new KeyEvent(edit_Action), 5, 5);

 edit.KeyList.Clear();
 edit.KeyList.Add(Keys.X | Keys.Control,
 ((EventHandlers)edit.KeyList.Handlers)SelectAllEvent);

 private void edit_JumpToUrl(object sender, UrlJumpEventArgs e)
 {
 if(is_our_url(e.Text))
 {
 process_url(e.Text);
 e.Handled = true;

54 / 105

Spellchecker Interface
The TextEditor supports the spell-as-you-type spell checker integration. To enable spelling for the editor,
set its CheckSpelling property to true and assign the WordSpell event handler.

The following artificial example considers any word longer than 3 characters to be correct:

Incorrect words are displayed with the wiggly underline (the default color is red, but it can be changed
using the SpellColor property). In real-life scenarios you would need to use some third-party
software/dictionary to really check the text. Another alternative would be using some word-list file, many
of them, including Public Domain or free ones, can be found on the Internet. Refer to a Miscellaneous
quick start project, which has one of these dictionaries.

Another useful feature supported by TextEditor is AutoCorrect, allowing you to auto correct words when
typing. To enable this feature you need to set property AutoCorrection to true and handle the
AutoCorrect event to provide replacements for words that were typed incorrectly.

Printing and Exporting
TextEditor includes support for printing, print previewing, and exporting to RTF and HTML.

Exporting can be performed as simple as this:

Printing tasks are performed and configured via the Printing property of the TextEditor.

For example, to show the print preview dialog, call:

TextEditor control supports adding user-defined information while printing.

 }
 }

 private void edit_WordSpell(object sender, WordSpellEventArgs e)
 {
 e.Correct = e.Text.Length > 3;
 }
 ...
 this.edit.WordSpell += new WordSpellEvent(this.edit_WordSpell);

 edit.SaveFile(FileName, new RtfExport());

 edit.Printing.ExecutePrintPreviewDialog();

55 / 105

To add some text to the footer:

Text in headers and footers can contain substitution tags. The standard ones are: [page], [pages], [date],
[time] and [username].

Macro Recording and PlayBack
TextEditor has macro recording and playback capabilities. It allows recording sequences of keyboard
commands and playing them later. Note that mouse input is not recorded.

This feature enables you to store a set of frequently used editing commands. Set MacroRecording
property to start/finish macro recording. Use the PlayBack method to repeat the stored command
sequence.

White-space Display
It is sometimes desirable for the user to see the codes which influence the layout of the text and are
normally invisible themselves. These codes are space, tab, end-of-line, and the end-of-file (not really a
code), and are often collectively referred to as the white-space. The TextEditor has the option to display
them, and to control their appearance.

The display of the white-space is enabled using the Visible property. The color used to display white-
space codes is determined by the SymbolColor property, and the characters used to display those codes
are determined by EofSymbol, EolSymbol, SpaceSymbol, and TabSymbol properties.

Line Separator
It is possible to have lines of the editor to be separated by thin horizontal lines, and to have the current
line highlighted. This behavior is controlled by the LineSeparator property.

The following options are available:

HighlightCurrentLine specifies that the current line in the editor will be highlighted using the
HighlightColor for background.

 edit.Printing.Footer.CenterText = "draft";

56 / 105

HideHighlighting specifies that the highlighting of the current line should be hidden when the
editor loses focus.

SeparateLines specifies that a thin horizontal line of LineColor should be drawn between each line of
text.

SeparateWrapLines specifies that each visual line of text produced as a result of word-wrap should
be separated in the same manner as separate lines (works only if the SeparateLines option is also
specified).

SeparateContent specifies that line separator will be drawn between sections of the code (for
example between methods), if TextEditor control is associated with SyntaxParser supporting this
feature.

Code snippets
The code snippets are the next code completion provider, allowing to insert frequently used fragments
of code. Code snippets can be inserted into the editor by pressing Tab key after snippet shortcut or by
executing code snippet popup window with Ctrl + K + X key sequence, or activated programmatically, by
calling the CodeSnippets method of the TextEditor.

The purpose of the code snippets is to permit the user to quickly enter one of the predefined fragments
of text. If the code snippet has fields declared, the editor allows modifying their values causing updating
field values inside the whole snippet.

The following picture illustrates the usage of the code snippets.

Hidden and Read-Only Lines
TextEditor control can mark certain lines to be readonly or hide them at all so the user can't see them.
This can be achieved by using SetLineHidden and SetLineReadonly methods. For hidden lines to take

57 / 105

effect, the AllowHiddenLines property needs to be set to true. Read-only lines can be made visually
different from editable lines by setting ReadonlyBackColor property. Sometimes it's required to mark
certain lines to be both hidden and readonly, this way they can not be deleted if the user selects the
outer block containing them and tries to delete it.

Structure GuideLines
TextEditor control can display dashed lines between syntax blocks for some parsers (Roslyn-based,
TypeScript and some advanced parsers), helping the user to better understand the structure of the
document being edited. This behavior is controlled by a Parser and can be switched off by the
StructureGuideLines parser option.

Minimap
A Minimap (code outline) gives you a high-level overview of your source code, which is useful for quick
navigation and code understanding. A file's minimap is shown on the right side of the editor. You can
click the shaded area to quickly jump to different sections of your file.

58 / 105

59 / 105

Syntax Parsing
Text parsing is performed by one of the Parser non-visual components. In the very basic version, it
controls syntax highlighting. In the case of more advanced parsers, it enables additional features such as
code completion, code outlining, code formatting, and syntax error underlining.

If there's no parser assigned, SyntaxEdit or TextEditor does not perform any parsing-related functions. To
be able to use those features, you need to create a Parser component explicitly and assign it via the
Lexer property of either these controls directly or their TextSource.

C#/VisualBasic (Roslyn) and TypeScript/JavaScript parsers
The package includes parsers based on Microsoft Code Compiler technology (Roslyn) and Microsoft
TypeScript compiler.

These parsers provide full syntax and semantic model of the text edited by SyntaxEdit control. It enables
additional features such as code completion, code outlining, code formatting, highlighting types in
different colors, and underlying syntax and semantic errors and warnings to be identical to the ones
found in the Microsoft Visual Studio editor.

LSP Parsers
LangServer-based parsers rely on external servers to provide features like auto complete, go to
definition, find all references, and alike. The Code Editor package includes parsers based on this
technology for C/C++, Java, Python, Lua XML, and PowerShell. There are two variations of each parser -
one that relies on the Language server to be installed on the target machine and one that includes all
required payload (such as clang libraries for c/c++ or embedded python distribution) in the form of
embedded resources. Java embedded parser contains LSP-server files but not Java installation itself,
which needs to be installed on target machines independently.

60 / 105

Advanced Parsers
The Code Editor package comes with several advanced parsers, each one designed to perform syntax
highlighting for certain languages. Each of these parsers is derived from the SyntaxParser class
implementing ISyntaxParser interface and performs syntax analysis of the text in a specific programming
language to provide advanced code editing features discussed above. These parsers use hard-coded
parsing algorithms instead of generic regular-expression-based rules, making them significantly faster
than generic ones (these will be explained further). Currently, we have advanced parsers for the following
languages: Python, C#, J#, Visual Basic.NET, Ansi-C, VBScript, JavaScript, HTML, SQL, T4, XML, and XAML.
These parsers perform complete syntax parsing of the source code to build the syntax tree, which is used
to implement all mentioned features. Please note that these parsers might not support full language
specification, especially language constructs which were added to these programming languages
recently.

Python and XAML parsers are implemented in their own namespaces/assemblies, Alternet.Syntax.Parsers.
Python and Alternet.Syntax.Parsers.XAML respectively.

For Python/IronPython, we have implemented a complete semantic analysis of the text, which builds a
semantic model of the whole text displayed in the editor (and also processes included files). The
semantic model is used by the Code Completion service to provide auto-completion and method
parameters help. This approach was inspired by studying Microsoft Code Analysis ("Roslyn")
implementation, which will be explained below.

Generic parsers
Writing your own parser to comply with a programming language specification is a non-trivial task, not
to mention keeping it up to date with full language specifications as the language evolves. However, for
a simple task of syntax highlighting, it's normally not required. To perform syntax highlighting, you can
rely on a generic parsing engine, which uses finite-state automaton rules driven by regular expressions
matching the parsed text. Although creating good syntax-highlighting rules for some complex languages
can still be tricky, you will rarely, if ever, have to do it yourself. The Code Editor includes more than 30
ready-to-use syntax schemes for the most commonly used modern programming languages. In rare
cases, you need to implement a parser for some custom language; one of these parsers can be a good
starting point. Syntax schemes are stored on disk as .xml files, and the built-in visual design-time parser
editor is provided to simplify the process of their creation. If you need most of these languages in your
application, consider using one of the SchemeParser descendants, which contains appropriate language
schemes in the form of an assembly resource.

Creating a new generic parser is described in the Advanced Topics section of the documentation.

TextMate parser

61 / 105

TextMate parser is based on the TextMate grammar that powers syntax highlighting and advanced text
editing features of Visual Studio Code.

TextMate parser uses Oniguruma regex engine and includes grammar definitions for 40+ programming
languages. On top of syntax highlighting, it supports features like indent-based outlining and structure
guidelines, code snippets, and code completion for the symbols already found in the text.

Creating own Generic Parser Schema
Although the Code Editor comes with a collection of parsers, creating a new one may sometimes be
necessary. In this chapter, we will develop a new parser for some trivial fictitious language.

First, let us informally describe the language we are willing to parse. The valid text in this language
consists of zero or more groups enclosed in curly brackets ("{", "}"), each containing zero or more
numbers separated by commas. We want to distinctly highlight punctuation symbols and numbers and
report erroneous input.

The first step is to create a new Parser object by dropping it from the toolbox and assigning it to some
SyntaxEdit by picking the newly created parser from the list of choices appearing for the Lexer property
of the editor.

After having done this, we can start exploring the SyntaxBuilder. It is invoked by pressing the "..." button
for the Scheme property of the parser object in the Properties window.

62 / 105

Now you should see the SyntaxBuilder dialog box appears. If you wanted to use some existing scheme,
you would have pressed the Load button. However, this time we will create a new scheme from scratch.
After completing it, you can press the Save button to make it possible to use this new scheme in other
projects.

The next thing to do is to define syntax highlighting styles used in the scheme. This is accomplished by
clicking the right mouse button on the Styles node to bring the context menu and choosing the Add
Style command.

After creating a style, you should name it and define its visual attributes. For this example, we will need
four styles: number, punctuation, whitespace, and error. Let us define numbers with olive color and italic
text style, punctuation symbols to be blue, and syntax errors to have a red background and white
foreground. The whitespace style is defined as having no distinct markup.

Note that when the editor is linked to the parser, it takes font styles to render text fragments from the
parser's styles instead of using its own FontStyle. It applies to all parsers, not just generic ones.

Then we define the states of the parser. For our example language, there will be two states: default and
block. States are defined similarly to styles by choosing the Add State command in the context menu
when clicking on the States node. In turn, states contain syntax blocks created by the Add Syntax Block
command from the context menu of a state.

63 / 105

A syntax parser is essentially a state machine driven by the text. Transition conditions are expressed in
terms of regular expressions, which are checked against the parsed text at the current position up to the
next end of the line. Expressions are tried in the syntax block definition order. The first successful match
determines the syntax block. The text position is advanced by the length of the match, and the text is
assigned the style specified for that syntax block. The matched text is additionally matched against the
list of the reserved words associated with this syntax block. If a match occurs, the style defined by the
ResWord Style is used instead of the one defined by the Style property. The state of the state machine is
changed according to the Leave State property of the syntax block, which can specify any of the states,
including the same state in which the syntax block resides, meaning no state transition is to take place.

The state machine for the language we are parsing is described in the following table and deserves some
comments.

The whitespace syntax block is only necessary because of the presence of a match all error syntax block.
In the more common case where no error highlighting is used, no style (the same as the whitespace style
that we have defined) would be used for the text that does not match any syntax blocks. The error syntax
block is the last in the sequence and matches a single character that any of the preceding rules has not
matched. The block syntax block is matched when the opening curly bracket is met. The bracket itself is
assigned the punctuation style, and the state machine changes its state into the block state (note that
state name, style name, and syntax block style name coincidences are not required).

In the block state, the whitespace, and error syntax blocks serve the same purpose as in the default state.
Number and comma syntax blocks cause numbers and commas to have the corresponding styles, and
the end syntax block, which matches the closing curly bracket, causes the transition back to the default
state.

64 / 105

Automatic Code Completion for arbitrary programming
language
If there is no SyntaxParser for your language, you can consider implementing automatic code completion
using NeedCodeCompletion event:

Depending on the kind of language you are working with, and whether you are using some complete
library to work with that language or doing everything yourself, the actual information on symbols will
be retrieved in different ways:

if you are using some third-party library, look for something that resembles the name "Symbolic
Information API" or like in the manual for that library;

if you are developing your own language or at least your own engine for some existing language,
you probably already know what exactly to do to acquire the information necessary for code
completion to work;

If you are working with the .NET family of languages, CLR Reflection API should be of use for this
purpose. The sample program supplied with the package provides a good starting point for working
with it.

 private void edit_NeedCodeCompletion(object sender, Alternet.Syntax.CodeCompletionArgs
e)
 {
 if ((e.CompletionType == CodeCompletionType.ListMembers) ||
 (e.CompletionType == CodeCompletionType.CompleteWord) ||
 ((e.CompletionType == CodeCompletionType.None) && (e.KeyChar == '.')))
 {
 // Look at Manual Code Completion, list members section
 ...
 e.Interval = (e.CompletionType != CodeCompletionType.None)
 ? 0 : 500;
 }
 if(e.CompletionType == CodeCompletionType.ParameterInfo ||
 e. CompletionType == CodeCompletionType.None &&
 e.KeyChar == '(')
 {
 // Look at Manual Code Completion, parameter info section
 ...
 e.Interval = (e.CompletionType != CodeCompletionType.None)
 ? 0 : 500;
 }
 }

65 / 105

Manual Code Completion
If you use Code Editor with a parser that does not fully support automatic code completion, you can still
provide some guidance to the users as they type by implementing some of the code completion logic
manually.

Global Settings
If the application contains more than one instance of the editor, it is often desired to share their UI
settings and provide the user with a centralized facility to manage them. Code Editor is shipped with
Customize quick start project that demonstrates how this can be accomplished.

It includes the SyntaxSettings class which is a holder for the following set of settings:

The font used to display the text in the editor

Syntax highlighting styles (i.e., foreground and background colors, font style)

Whether the following features are enabled or not:

Show margin

Show gutter

URL highlighting

Outlining

Word wrapping

Use of spaces instead of tabs for indents

The width of the gutter area

The position of the margin

Tab-stop positions

Navigation options

Selection options

Outline options

Scrollbar options

Color Themes

66 / 105

To the GlobalSettings class, its instance must be created, i.e.:

The settings can be retrieved from some particular SyntaxEdit controls as follows:

And then assigned to some other editor like this:

Settings can be stored in the file:

And later on, loaded from that file:

As the file's name suggests, settings are stored in XML format. Note that in the real application, you
would check for the existence of that file, and also, this file should probably be located somewhere down
the user's Application Data folder.

To make handling the global settings even easier, the Customize demo project includes an example
settings dialog.

 private SyntaxSettings GlobalSettings;
 ...
 GlobalSettings = new SyntaxSettings();

 GlobalSettings.LoadFromEdit(edit);

 GlobalSettings.ApplyToEdit(edit);

 GlobalSettings.SaveFile("GlobalSettings.xml");

 GlobalSettings.LoadFile("GlobalSettings.xml");

67 / 105

All you need to do to use it is to declare and construct its instance:

And later on, when the user requests the editor settings dialog, perform something similar to the
following:

Localization of dialogs

 using Alternet.Editor.Dialogs;
 using Alternet.Editor.Wpf.Dialogs; // for WPF edition
 ...
 private DlgSyntaxSettings Options;
 ...
 Options = new DlgSyntaxSettings();

 Options.SyntaxSettings.Assign(GlobalSettings);
 if(Options.ShowDialog() == DialogResult.OK)
 {
 GlobalSettings.Assign(Options.SyntaxSettings);
 // for each syntaxEdit or TextEditor used in the application
 GlobalSettings.ApplyToEdit(edit);
 }

68 / 105

All string constants used in dialogs are localized to a few foreign languages. CodeEditor supports dialog
localization to German, French, Spanish, Russian, and Ukrainian languages. The following code
demonstrates how to switch to the German language:

 Using Alternet.Common;
 ...
 CultureInfo oldcInfo = Thread.CurrentThread.CurrentUICulture;
 Thread.CurrentThread.CurrentUICulture = new CultureInfo("de");
 try
 {
 StringConsts.Localize();
 }
 finally
 {
 Thread.CurrentThread.CurrentUICulture = oldcInfo;
 }

69 / 105

Scripter Overview
AlterNET Scripter is a component library designed to integrate C#, Visual Basic, TypeScript, JavaScript,
Python, and IronPython scripts into your WinForms and WPF .NET desktop applications. It allows
extending the application logic by implementing custom functionality or automating custom tasks
without recompiling and redeploying the application.

Script Execution
The main components that provide script-executing functionality for supported programming languages
are: ScriptRun for C# and VisualBasic; ScriptRun for Python; ScriptRun for IronPython and ScriptRun for
TypeScript and JavaScript. These components encapsulate the functionality of running standalone C#,
Visual Basic, Python, IronPython, TypeScript, and JavaScript script files or projects with forms and
resources; they allow referencing third-party assemblies and registering application-defined objects to
be accessible in the scripts.

Script Debugging
The following components provide a fully-featured script debugging engine for the supported
programming languages: ScriptDebugger for C# and VisualBasic; ScriptDebugger for Python; Script

70 / 105

Debugger for IronPython; ScriptDebugger for TypeScript and JavaScript. ScriptDebugger for debugger
that relies on Debugger Adapter Protocol.

These debuggers support Start, Stop, Break and Continue commands, step-by-step execution,
breakpoints, expression evaluation, viewing local variables and watches, stack tracing, and in the case of
C#/VisualBasic, multiple thread debugging.

AlterNET Scripter includes a set of quick-start projects, each designed to highlight the component's
specific features.

Below is a brief overview of these projects, most of them available for C#/Visual Basic, Python,
IronPython, and TypeScript

AlterNET Studio - demonstrate how to run and debug script files and projects. Example files and projects
are located in the demo\resources\debugger folders.

CallMethod - a set of quick-start projects for all supported languages which demonstrate how to execute
script methods and pass application objects to the script.

CustomAssembly - demonstrates how to use external assemblies in the scripts

EvaluateExpression - shows how ScriptRun can evaluate expressions, which again can access some
objects defined in the application

Object Reference - shows how application-defined objects can be accessed by bane from the script.

Threading - shows how scripts can run asynchronously.

DebuggerIntegration - Shows how debugger logic can be integrated into the application to debug scripts
(application-independent scripts in case of C#/Visual Basic).

For C#/Visual Basic only:

DebugMyScript - demonstrates how scripts executed by the application can be debugged by a separate
Script Debugger tool.

DebugRemoteScript - Shows how debugger logic can be embedded in the application to debug scripts
that access the application API indirectly.

Isolated script - Shows how to load a script in the separate AppDomain so that it can be unloaded
afterward and execute methods in it.

For Debugger Adapter Protocol (DAP):

CppLlvmDapDebugger - Shows how debugger logic can be integrated into the application to debug
standalone C++ projects.

71 / 105

PythonDapDebugger - Shows how debugger logic can be integrated in the application to debug
standalone Python projects.

Creating your first project
To see C# scripting in action, place the ScriptRun component on the form, and write the following code
in the Button click event handler:

The first line of the code populates the Script source, the second line adds references to the most
common System assemblies, and the third runs the code.

 scriptRun1.ScriptSource.FromScriptCode("public class ScriptTest { public static void
Main() { System.Windows.Forms.MessageBox.Show(\"Hello World \");} }");
 scriptRun1.ScriptSource.WithDefaultReferences();
 scriptRun1.Run();

72 / 105

C# and Visual Basic Script execution
The basic script execution workflow requires setting a script source, adding references to the assemblies
used in the script; registering application-defined objects accessible to the script; compiling the script to
a dynamically-linked library or standalone executable program, and running some method in that DLL or
executing the program.

Setting up Script Source
All properties and methods required to set a script source are encapsulated in ScriptSource property of
the ScriptRun class; below are the essential ones:

Files - specifies a collection of source files to be compiled and executed;

ScriptCode - specifies source in a form of text string;

ProjectName, ProjectFileName and RootNamespace - contain project-related information if ScriptSource
is loaded from the project.

Imports - contains global namespaces in case Visual Basic is used, so you do not need to specify them in
the code;

Conditionals - contains lists conditional compilation symbols;

References - contains a list of assembly references for types used in the scripts; this can include reference
to the calling application.

SearchPaths - contains search paths to look for the third-party references in case they're not supplied
with a full path.

Resources - contains a list of RESX files with resources.

FromScriptFile - loads Script Source from the single source file;

FromScriptCode - loads script from code in the form of a text string;

FromExpression - sets ScriptSource to the string expression.

FromScriptProject - loads code from Visual Studio Project

Adding assembly references:
The assemblies where these types are declared need to be referenced so that the script can use their
types.

The following code populates references with the most commonly used assemblies:

73 / 105

For technology set to WinForms (which is the default option), it contains the following assemblies:

System,System.Drawing System.WindowsForms;

Note that this list is different in the case of .NET Core targets.

You can reference additional assemblies by adding them to the References property:

This method accepts a full path; you can also add references to third-party assemblies if the script uses
types from it.

Registering objects to be used in the script
Application objects accessible by the script need to be added to the GlobalItems collection, along with
the object's name, which will be used in the script, and the object's type or the object itself.

Object value itself is only required during script execution; for script compilation, object name and type
are sufficient.

ScriptRun adds references to the assemblies, which contain types of the objects being added to Global
Items automatically.

Note that AssemblyKind property needs to be set to Dynamically Linked Library for it to be loaded in the
running application process and be able to access application-defined objects.

Below is a sample code that registers application-defined objects in the script.

Script Compilation and Execution

scriptRun1.ScriptSource.WithDefaultReferences();

 scriptRun1.ScriptSource.References.Add("System.Data");

 public class MyItem
 {
 public MyItem(string text)
 {
 this.Text = text;
 }
 public string Text;
 }
 scriptRun1.GlobalItems.Add(new ScriptGlobalItem("MyItem", obj: new MyItem("hello")))

74 / 105

Once ScriptSource is set, next step is to Compile the script; this step is performed implicitly when the
script runs the first time or when the Script source is changed (this includes changes of script files
externally)

Script compilation engine is implemented by IScriptHost; there are two implementations of IScriptHost
provided: a legacy engine based on CodeDOMScriptHost wrapper around command-line C# or Visual
Basic compiler, and RoslynScriptHost based on new Microsoft Roslyn Code compiler technology - the
last one is used by default, and it allows some additional features such as referencing to another script
source dynamically by using #load directive and gives more control on code parsing and compilation.

Scripts can be compiled into a dynamically-linked library or in a standalone executable; this is controlled
by the AssemblyKind property. GenerateModulesOnDisk allows to control whether the assembly being
compiled will reside in memory or on the disk; and ModulesDirectoryPath specifies the location of
compiled assembly where compiled modules will be stored. Platform target (AnyCPU,
AnyCpu32BitPreferred, x86, x64, or Auto) is controlled by Platform property (by default, it's set to Auto
and takes the target platform from the application).

Once the compilation is executed, the Compiled property will be set to true in case compilation was
successful, and IScriptHost's ScriptAssembly property will point to the assembly compiled from the script
source. Otherwise IScriptHost's properties CompileFailed will be set to true and CompilerErrors will be
populated with compiler errors. Please note, CompilerErrors may contain compiler warnings even in case
of successful compilation.

Upon successful compilation, you can subsequently call Run, RunMethod, or their asynchronous variants:
RunAsync and RunMethodAsync; in case of standalone executable RunProcess should be used instead.

75 / 105

Python and IronPython Script Execution and
Debugging
Scripter contains components that implement python script compilation, execution, and debugging.
These components are ScriptRun and ScriptDebugger for Python and ScriptRun and ScriptDebugger

These components are installed on the AlterNet Scripter.Python and AlterNet Scripter.IronPython tabs in
Visual Studio.

Script execution is based on the Python.NET and IronPython open-source scripting engines, allowing
Python programmers seamlessly integrate python code with the .NET framework. These engines support
executing Python code and accessing .NET types and objects of the host application from the script.

ScriptRun and ScriptRun provides a very similar interface to .NET ScriptRun; the former uses Python to
execute Python scripts, while the latter creates in-memory .NET assembly out of Python code.

ScriptRun and ScriptRun can execute single files, Python projects (which can be loaded/saved to a
.pyproj file), or evaluate Python expressions.

The main difference between Python.NET and IronPython scripting engines is that Python.NET supports
up to Python 3.7 language specification and can use most third-party libraries like NumPy or Pandas that
rely on Python/Cython code. In comparison, IronPython supports up to Python 2.7 language
specification. It also provides multi-threading script execution capabilities, unlike Python.NET, which can
not execute scripts in multiple threads simultaneously.

ScriptDebugger and ScriptDebugger are based on Microsoft.Scripting debugging engine; they allow
incorporating debugging logic in the same application and do not have a limitation of .NET debugger,
which requires a debugger and script to be debugged running in the separate application processes. It
has most of the functionality that the .NET Script debugger provides, except for multi-threaded
debugging.

76 / 105

77 / 105

TypeScript/JavaScript Script Execution and
Debugging
Alongside component libraries for .NET and Python-based script compilation, execution, and debugging,
we provide very similar components for TypeScript/JavaScript: ScriptRun and ScriptDebugger

These components are installed on the AlterNet Scripter.TypeScript tab in Visual Studio.

Script execution is based on Microsoft ClearScript, which provides the v8 high-performance open-source
JavaScript engine. It supports executing JavaScript code and accessing .NET types and objects of the host
application from the script.

ScriptRun provides a very similar interface to .NET ScriptRun; the main difference is that it does not
create .NET assembly and executes JavaScript code using the ClearScript engine.

The main difference in API is that, unlike .NET Script Runner, the collection of referenced objects, types
and .NET assemblies is specified via HostItemsConfiguration property; as opposed to Global
Items/References properties; RunMethod/RunMethodAsync are replaced with RunFunction/RunFunction
Async.

The following code adds references to the most commonly used assemblies and registers RunButton to
be accessible from the script:

ScriptRun can execute single files, typescript projects (which can be loaded/saved to a JSON file), or
evaluate TypeScript/JavaScript expressions.

Note that order of TypeScript/JavaScript files in a project is important, as they get executed one by one.

TypeScript compilation service uses host configuration to automatically create all support files containing
typescript definitions. The following line needs to be placed on top of the user's script to access .NET
types and objects from the host configuration:

ScriptDebugger is based on Google Chrome debugging development tools; it allows incorporating
debugging logic in the same application and does not have the limitation of the .NET debugger, which
requires a debugger and script to be debugged running in the separate application processes. It has
most of the functionality that the .NET Script debugger provides, except for multi-threaded debugging
and automatic retrieval/evaluation of local variables.

///<reference path="clr.d.ts" />

78 / 105

79 / 105

Script Debugging
A lot of times, an application developer needs to allow users to debug the scripts they write. We provide
tools to debug script code and a set of UI widgets to build custom debugging interfaces.

C# and Visual Basic Script Debugging
Script Debugger engine is implemented in Alternet.Scripter.Debugger assembly, and it is based on CLR
debugging COM interfaces low-level API to debug .NET applications.

https://msdn.microsoft.com/en-US/library/ms404484(v=vs.110).aspx

The main component of script debugging is the ScriptDebugger class. It provides all commonly used
debugging features like step-by-step execution, stopping on breakpoints, examining local variables,
expression evaluations, etc.

Below is a summary of ScriptDebugger most essential properties, methods, and events:

Methods:
StartDebugging() - starts executing the program from the entry point.

AttachToProcessAsync - Attaches to the already started process in which scripts are to be debugged.

https://msdn.microsoft.com/en-US/library/ms404484(v=vs.110).aspx
https://msdn.microsoft.com/en-US/library/ms404484(v=vs.110).aspx
https://msdn.microsoft.com/en-US/library/ms404484(v=vs.110).aspx

80 / 105

StopDebuggingAsync - Stops the debugging session.

Break() - Causes the given process to pause its execution so that its current state can be analyzed.

Continue() - Continues given process to the next breakpoint or until the process finishes.

StepInto() - Executes one statement of code; steps into the following function call, if possible.

StepOver() - Executes one statement of code; steps over the following function call, if possible.

StepOut() - Executes remaining lines of the function; steps out of the currently executed function.

ActivateThread - Switches debugging to the specified thread.

SwitchToStackFrame - Switches debugging to the given stack frame.

SetRunToPositionBreakpoint - Causes the debugger to stop at the specified position.

Following methods may take a considerable amount of time. Therefore they're implemented
asynchronously:

EvaluateExpressionAsync - Evaluates expression in the current stack frame, with or without child
properties.

EvaluateCurrentExceptionAsync - Evaluates the exception thrown by the debugger.

GetStackFramesAsync - Gets a list of method calls currently on a stack.

GetThreadsAsync - Gets a list of active threads.

GetVariablesInScopeAsync - Gets all local variables in the given stack frame.

TrySetNextStatementAsync - Sets the execution point to the specified line.

GetExecutionPositionAsync - Gets the current execution point.

Properties:
IsStarted - Indicates whether the debug process has started.

State - Gets current debugger state.

ScriptRun - in case Debugger used to debug standalone executable, contains all information required to
compile and run the script.

GeneratedModulesPath - Specifies a directory where assemblies for the scripts being debugged are
located.

81 / 105

Breakpoints - Returns collection of debugger breakpoints.

EventsSyncAction - A function that could be provided by the application to sync raised debugger events
if required (for example, perform Control.Invoke)

Events:
ActiveThreadChanged - Occurs when the thread to be debugged changes.

<xref:Alternet.Scripter.Debugger.ScriptDebugger.DebuggerErrorOccured> - Occurs when the debugger
encounters an error during debugging session.

DebuggingStarted - Occurs when the debugging session is started.

DebuggingStopped - Occurs when the debugging session is stopped.

ExecutionResumed - Occurs when debugging is resumed after being paused.

ExecutionStopped - Occurs when debugging is paused.

LogMessageReceived - Occurs when a debug message is received.

StackFrameSwitched - Occurs when the debugger is switched to the stack frame.

StateChanged - Occurs when debugging state is changed (when the debugger is started, stopped, or
paused)

.NET Script Debugging best practices
The main issue we've faced with debugging is that it's impossible to embed debugging logic in the same
process where scripts are executed, as the debugger process will need to freeze itself when debugging.
Refer to the following blog for more details:

https://blogs.msdn.microsoft.com/jmstall/2005/11/05/you-cant-debug-yourself/

Therefore we see two main options for script debugging to work:

1. Script is compiled as a dynamically linked library and is linked to the calling application (which is the
most straightforward way for scripts to be able to access application-defined objects). In this case
Script debugger must be a separate process that attaches to the primary application process and
allows to debug script code in it. The script debugger can be made look like it belongs to the same
application (which is outside of the scope of this tutorial), but it has to be in a separate process.

In this mode, Script Debugger does not compile or execute the script itself; instead, it relies on the
primary application. It receives the application process id, source, and project file along with the name of
the assembly to be debugged via command-line arguments; attaches to the application process and

https://blogs.msdn.microsoft.com/jmstall/2005/11/05/you-cant-debug-yourself/
https://blogs.msdn.microsoft.com/jmstall/2005/11/05/you-cant-debug-yourself/
https://blogs.msdn.microsoft.com/jmstall/2005/11/05/you-cant-debug-yourself/

82 / 105

communicates with it by sending Start Debug or Stop Commands and receiving a list of compilation
errors or script completion events.

Refer to DebugMyScript quickstart projects for more details.

Note that you cannot debug the main application under Visual Studio and have Script Debugger
attached to it simultaneously, as Visual Studio will attach its own debugger.

Note that the target platform of the debugger and debuggee process need to be the same (for AlterNET
Studio demo, it's set to AnyCPU).

2. Script to be compiled in the separate executable, and debugging logic is embedded in the
application itself. This option requires either the script to be application-independent (which is not
helpful if scripts are intended to extend application logic) or access application-defined objects via
interprocess-communication. Please refer to our DebuggerIntegration/ DebugRemoteScript
quickstart projects for more details.

These limitations do not apply to Python, IronPython, and TypeScript script debuggers.

83 / 105

Script Debugging Widgets
Scripter package includes a set of debugger widgets, toolbars, menus, and code editors available both
for WinForms and WPF and can be linked to any Debugger components for C#/VisualBasic,
Python/IronPython, TypeScript/JavaScript, and Debug Server Protocol-based debuggers.

These widgets include:

Output (Output) - to log debugger events or application-specific messages.

Errors (Errors) - to display a list of compilation errors.

84 / 105

Breakpoints (Breakpoints)- to display and navigate through the list of breakpoints set in the source;

85 / 105

CallStack (CallStack)- to display and navigate through the list of method calls that are currently on the
stack.

86 / 105

Locals (Locals)- to examine values of local variables once debugging code step-by-step.

87 / 105

Watches (Watches)- to examine values of watch expressions when debugging.

88 / 105

Threads (Threads)- to display active threads and switch debugging between them.

89 / 105

DebuggerControlToolbar (DebuggerControlToolbar)- a toolbar with buttons executing
Run/Stop/StepInto/StepOver commands.

90 / 105

DebugMenu (DebugMenu) - menu with menu items executing Run/Stop/StepInto/StepOver commands.

91 / 105

DebugCodeEdit (DebugCodeEdit) code-editing controls designed to work with the Script debugger;
these controls allow the user to set or remove breakpoints and evaluate expressions by hovering the
mouse over the symbol during debugging.

92 / 105

93 / 105

Form Designer Overview
AlterNET Form Designer is a .NET component library providing a quick and convenient way to create
visual user interfaces. It allows users to place controls on the design surface, set their initial properties,
and write event handlers for their events.

The main components in the package are FormDesignerControl for WinForms and FormDesignerControl
for WPF. These controls represent a design surface allowing users to add controls to a form, arrange
them, and write code for their events.

Form Designer supports all common editing operations such as dragging, selecting, and deleting
components and controls, changing their size and z-order, aligning them horizontally or vertically, copy
and pasting controls. Like Visual Studio Form Designer, it serializes its content into C#/VisualBasic or
TypeScript/JavaScript source code.

Form Designer includes a set of demos and quick start projects that show how to place controls from the
toolbox, load and save forms being designed, write code in control's event handlers, and run these
forms.

Below is a brief overview of these projects:

94 / 105

FormDesigner - This project shows how to build visual interfaces by placing controls on the design
surface, arranging them, and writing code for their events.

LoadAndSave - demonstrates how to save/load forms being designed.

DesignAndRun - shows how to write event handlers code and run the form being designed.

CustomizeToolbox - shows how to rearrange toolbox tabs and install third-party assemblies on the
toolbox.

Creating your first project
The first thing to do after creating a new WinForms or WPF application is to place the FormDesigner
Control or FormDesignerControl controls on your form. You would also need to place ToolboxControl or
ToolboxControl controls and assign their FormDesignerControl property so you can drag and drop
controls and components from it to the design surface.

When you run the application, you will see a new empty form with the design surface, where you can
drag controls from the toolbox, resize, arrange them, etc.

If you'd like to examine and change the properties of the selected controls, you will need to place
PropertyGridControl or PropertyGridControl controls, set their FormDesignerControl property, so it
displays a component or control currently selected by the designer.

Similarly, for navigation through the form's controls, you can place OutlineControl or OutlineControl
controls and set their FormDesignerControl property.

95 / 105

WinForms Form Designer
WinForms Form Designer provides a design-time surface where the user can place controls from the
toolbox, arrange them, examine and change their properties and write event handlers for their events.

FormDesignerControl Control
FormDesignerControl is based on .NET Framework FormDesigner services, which are implemented in
System.ComponentModel.Design namespace and are included in the .NET framework. It allows AlterNET
FormDesigner to look and feel very similar to Visual Studio WinForms Form Designer.

Below are the essential properties, methods, and events of FormDesignerControl class:

Properties:
DesignerCommands - provides an interface to Form Designer commands, such as Copy/Paste,
Undo/Redo, Aligning and Arranging controls, etc.

DesignerHost - Provides an interface for managing designer transactions and components.

IsModified - Indicates whether designer content has been modified since the last save.

SelectedComponents - contains a list of selected components or controls.

PrimarySelection - gets the first selected component or control.

Source - gets or sets FormDesigner Source.

96 / 105

ToolboxControl - gets or sets toolbox control associated with the designer.

ReferencedAssemblies - gets a collection of assemblies where the controls and components used on the
form being designed are declared.

ImportedNamespaces - in the case of Visual Basic, it gets a collection of globally available namespaces.

Options - allows changing Form Designer appearance by specifying whether to display snap lines, smart
tags, form designer grid, and change grid size.

Events:
DesignerHostChanged - occurs when the designer host changes, for example, if a new form is loaded.

NavigateToUserMethodRequested - occurs when the form designer is requested to navigate to the event
handler. For example, when a user double-clicks on the control.

SelectionChanged - occurs when a user selects a different control in the designer.

CommandStateChanged - occurs when a state of designer commands changes (for example, when undo
stack becomes available)

DesignedContentChanged - occurs when a user modifies any aspect of the control being designed.

LoadingErrorOccured - occurs when the design code contains any syntax error during loading.

CompilerErrorClick - occurs when a user clicks on a compiler error on the Form Designer surface.

DesignSurfaceKeyDown - when a user presses a key when the design surface is focused.

Methods:
Reload() - reloads form to be designed from the source.

Save() - serializes designer to C# / Visual Basic file, Python, or TypeScript / JavaScript code.

Form Designer works with three source files simultaneously: one containing design-time code and
another containing user-written event handlers and resource files for saving/loading the form's
resources (such as images). Most often, users will need to edit at least a file containing event handlers,
which will require setting up FormDesignerControl control's source to the one supporting integration
with the editor. Refer to FormDesignerTextSource class for the implementation of the source, which
integrates with SyntaxEdit control included in our demo projects.

Error Handling
WinForms FormDesigner loads and saves its content into C#/VisualBasic, Python, or
TypeScript/JavaScript code; this code needs to be correct both from a syntax and semantic point of view.

97 / 105

If the FormDesigner loader encounters an error in the code, it switches to error mode. It displays a list of
found errors, allowing a user to click and navigate to the error source by handling CompilerErrorClick
event.

Note: specific language assembly handling code serialization needs to be included in the project to
save/load Form designer content into the code.

C#/VisualBasic language services are implemented in Alternet.FormDesigner.Roslyn.v9 assembly;

Python language services are implemented in Alternet.FormDesigner.Python.v9 assembly.

TypeScript/JavaScript language services are implemented in Alternet.FormDesigner.TypeScript.v9
assembly.

ToolboxControl
The ToolboxControl control displays components and controls you can place onto the design surface. It
provides a set of foldable tabs helping to organize controls by categories and allowing to specify which
components and controls, including third-party controls, appear on the toolbox, on which tabs, and sort
order.

98 / 105

ToolBox control can be linked to FormDesignerControl by setting FormDesignerControl property which
allows dragging components and controls to the Form Designer.

Below are essential properties and methods to manipulate Toolbox control:

Properties
CategoryNames - gets a collection of Categories (Tabs) displayed by the toolbox.

SelectedTool - returns currently selected toolbox item.

Methods
AddCategory - adds a new category to the toolbox.

AddItem - places a toolbox item onto the specified toolbox tab.

ClearItemsInCategory - clears items in the specified tab.

GetAllTools() - gets all toolbox items.

GetToolsFromCategory - gets toolbox items on the specific tab.

SelectPointer() - deselects currently selected toolbox item and selects pointer tool.

RemoveCategory - removes a specific tab.

RemoveItem - removes a toolbox item from the category.

99 / 105

SetSelectedItem - selects toolbox item.

AddItemForType - adds toolbox item from the type name.

AddItemsFromAssembly - add all types that can appear on the toolbox from the assembly.

ScrollToCategory - scrolls toolbox control to the specified category.

ScrollToItem - scrolls toolbox control to the specified item.

BeginUpdate() - prevents repainting of the toolbox until EndUpdate is called.

EndUpdate() - re-enables toolbox repainting.

Save - saves the toolbox content to the specified stream.

Load - loads the toolbox content from the specified stream.

PropertyGridControl
The PropertyGridControl control allows the user to view and change the design-time properties and
events of the selected controls or components.

PropertyGrid control can be linked to FormDesignerControl by setting FormDesignerControl property
allows viewing and changing properties and events for the controls selected in the Form Designer.

OutlineControl

100 / 105

OutlineControl displays the form's layout as a tree view, providing an easy way to navigate, show/hide
and re-arrange controls on the form.

OutlineControlcontrol can be linked to FormDesignerControl by setting FormDesignerControl property
which allows navigating through the controls displayed by the Form Designer.

101 / 105

WPF Form Designer
WPF Form Designer provides a design-time surface where the user can place controls from the toolbox,
arrange them, examine and change their properties and write event handlers for their events.

FormDesignerControl Control
FormDesignerControl is based on SharpDevelop open-source FormDesigner package:
https://github.com/icsharpcode/WpfDesigner

Below are the essential properties, methods, and events of FormDesignerControl class:

Properties:
DesignerCommands - provides an interface to Form Designer commands, such as Copy/Paste,
Undo/Redo, Aligning and Arranging controls, etc.

IsModified - Indicates whether designer content has been modified since the last save.

SelectedItems - contains a list of selected controls.

Source - gets or sets FormDesigner Source.

ReferencedAssemblies - gets a collection of assemblies where the controls used on the form being
designed are declared.

https://github.com/icsharpcode/WpfDesigner
https://github.com/icsharpcode/WpfDesigner
https://github.com/icsharpcode/WpfDesigner

102 / 105

CurrentTool - gets or sets the currently selected tool in the Form Designer.

Events:
NavigateToUserMethodRequested - occurs when the form designer is requested to navigate to the event
handler. For example, when a user double-clicks on the control.

SelectionChanged - occurs when a user selects a different control in the designer.

DesignedContentChanged - occurs when a user modifies any aspect of the control being designed.

Methods:
Reload() - reloads form to be designed from the source.

Save() - serializes designer content to the XAML code.

Form Designer works with two different source files simultaneously: XAML containing design-time code
and C# or Visual Basic source containing user-written event handlers. Most often, users will need to edit
a file containing event handlers, which will require setting up FormDesignerControl control's source to
the one supporting integration with the editor. Refer to FormDesignerTextSource class for the
implementation of the source, which integrates with TextEditor control included in our demo projects.

Error Handling
WinForms FormDesigner loads and saves its content into C#/VisualBasic, Python, or
TypeScript/JavaScript code; this code needs to be correct both from a syntax and semantic point of view.
If the FormDesigner loader encounters an error in the code, it switches to error mode. It displays a list of
found errors, allowing a user to click and navigate to the error source by handling CompilerErrorClick
event.

ToolboxControl
The ToolboxControl control displays components and controls you can place onto the design surface. It
provides a set of foldable tabs helping to organize controls by categories and allowing to specify which
components and controls, including third-party controls, appear on the toolbox, on which tabs, and sort
order.

103 / 105

ToolBox control can be linked to FormDesignerControl by setting FormDesigner property which allows
dragging components and controls to the Form Designer.

Below are essential properties and methods to manipulate Toolbox control:

Properties
CategoryNames - gets a collection of Categories (Tabs) displayed by the toolbox.

SelectedToolboxItem - returns the currently selected toolbox item.

Methods
AddCategory - adds a new category to the toolbox.

AddItem - places a toolbox item onto the specified toolbox tab.

ClearItemsInCategory - clears items in the specified tab.

GetAllTools() - gets all toolbox items.

GetToolsFromCategory - gets toolbox items on the specific tab.

SelectPointer() - deselects currently selected toolbox item and selects pointer tool.

RemoveCategory - removes a specific tab.

RemoveItem - removes a toolbox item from the category.

104 / 105

SetSelectedItem - selects toolbox item.

AddItemForType - adds toolbox item from the type name.

AddItemsFromAssembly - add all types that can appear on the toolbox from the assembly.

BeginUpdate() - prevents repainting of the toolbox until EndUpdate is called.

EndUpdate() - re-enables toolbox repainting.

Save - saves the toolbox content to the specified stream.

Load - loads the toolbox content from the specified stream.

PropertyGridControl
The PropertyGridControl control allows the user to view and change the design-time properties and
events of the selected controls or components.

PropertyGrid control can be linked to FormDesignerControl by setting FormDesignerControl property
allows viewing and changing properties and events for the controls selected in the Form Designer.

OutlineControl
OutlineControl displays the form's layout as a tree view, providing an easy way to navigate, show/hide
and re-arrange controls on the form.

105 / 105

OutlineControlcontrol can be linked to FormDesignerControl by setting FormDesigner property which
allows navigating through the controls displayed by the Form Designer.

	Introduction
	Getting Started
	Code Editor
	Overview
	Win Forms
	Basic Features
	Extended Features

	WPF
	Basic Features
	Extended Features

	Syntax Parsing
	Advanced Topics

	Scripter
	Overview
	C#/Visual Basic
	Python/IronPython
	TypeScript/JavaScript
	Script Debugging
	Debugger UI

	Form Designer
	Overview
	Win Forms
	WPF

